
 

NAVAL 
POSTGRADUATE 

SCHOOL 
 
 

MONTEREY, CALIFORNIA 
 
 
 

DISSERTATION 
 

Approved for public release; distribution is unlimited 
 

RAPID PROTOTYPING OF ROBOTIC SYSTEMS 
 

by 
 

William James Smuda 
 
 

June 2007 
 

 
Dissertation Supervisor:           Mikhail Auguston 



THIS PAGE INTENTIONALLY LEFT BLANK 

 



i 

REPORT DOCUMENTATION PAGE  Form Approved 
 OMB No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, 
including the time for reviewing instruction, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing the collection of information.  Send comments regarding this 
burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302, and to the Office of Management 
and Budget, Paperwork Reduction Project (0704–0188) Washington DC 20503. 

1.  AGENCY USE ONLY 
 

2.  REPORT DATE 
        June 2007 

3.  REPORT TYPE AND DATES 
COVERED  Dissertation 

4.  TITLE AND SUBTITLE: Rapid Prototyping of Robotic Systems 
6.  AUTHOR Smuda, William J. 

5.  FUNDING 
NUMBERS 
 

7.  PERFORMING ORGANIZATION NAME AND ADDRESS 
Naval Postgraduate School 
Monterey, CA  93943–5000 

8.  PERFORMING 
ORGANIZATION  
REPORT NUMBER 

9.  SPONSORING / MONITORING AGENCY NAME(S) AND 
ADDRESS(ES) 
N/A 

10. SPONSORING / 
MONITORING 
AGENCY REPORT 
NUMBER 

11.  SUPPLEMENTARY NOTES 
The views expressed in this dissertation are those of the author and do not reflect the official policy or 
position of the Department of Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION 
CODE  A 
 

13. ABSTRACT  

     This effort describes a systems engineering approach to the design and implementation of software for 
prototyping robotic systems. Developing networked robotic systems of diverse physical assets is a 
continuing challenge to developers.  Problems often multiply when adding new hardware/software artifacts 
or when reconfiguring existing systems. This work describes a method to create model-based, graphical 
domain-specific languages. Domain-specific languages use terms understandable to domain engineers as 
well as abstract software engineering decisions. This methodology enables domain engineers to create 
quality executable prototypes without being versed in the intricacies of software engineering. 

15. NUMBER 
OF PAGES  

251 

14. SUBJECT TERMS   
Robotics, Prototyping, Component Based Software Engineering, Model-driven 
Architecture, Domain-specific Languages 
 

16. PRICE 
CODE 

17.  SECURITY 
CLASSIFICATION OF 
REPORT 
Unclassified 

18.  SECURITY 
CLASSIFICATION OF 
THIS PAGE 
Unclassified 

19.  SECURITY 
CLASSIFICATION 
OF ABSTRACT 
Unclassified 

20. 
LIMITATION 
OF 
ABSTRACT 
UL 

         NSN 7540–01–280–5500                                                                                                              Standard Form 298 (Rev. 2–89) 
                                                                                                                                                 Prescribed by ANSI Std. 239–1 



ii 

 

THIS PAGE INTENTIONALLY LEFT BLANK 



iii 

Approved for public release; distribution is unlimited  
 

RAPID PROTOTYPING OF ROBOTIC SYSTEMS 
 

William James Smuda 
United States Army, Tank Automotive Research Development and Engineering Center 

(TARDEC) 
B.S., Engineering, University of Illinois, 1977 

M.S., Computer Science and Engineering, Oakland University, 1988 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
DOCTOR OF PHILOSOPHY IN SOFTWARE ENGINEERING 

 
from the 

 
NAVAL POSTGRADUATE SCHOOL 

June 2007 
 
 

Author: __________________________________________________ 
William James Smuda 

 
Approved by:  

______________________ _______________________ 
Mikhail Auguston Luqi 
Professor of Computer Science Professor of Information 
Dissertation Supervisor and Chair Sciences 
 
______________________ _______________________ 
Kevin Squire Don Brutzman 
Professor of Computer Science Associate Professor of Applied 
 Science 

 
______________________ 
James Overholt 
US Army, Research Engineer 

 
 
Approved by: __________________________________________________ 
 Peter Denning, Chair, Department of Computer Science 
 
Approved by: __________________________________________________ 
 Julie Filizetti, Associate Provost for Academic Affairs 



iv 

THIS PAGE INTENTIONALLY LEFT BLANK 



v 

ABSTRACT 

This effort describes a systems engineering approach to the design and 

implementation of software for prototyping robotic systems. Developing networked 

robotic systems of diverse physical assets is a continuing challenge to developers.  

Problems often multiply when adding new hardware/software artifacts or when 

reconfiguring existing systems. This work describes a method to create model-based, 

graphical domain-specific languages. Domain-specific languages use terms 

understandable to domain engineers as well as abstract software engineering decisions. 

This methodology enables domain engineers to create quality executable prototypes 

without being versed in the intricacies of software engineering. 

Software systems, like physical systems, require explicit architectural descriptions 

to increase system level comprehension.  Since non-software specialists do most 

experimental work, this effort suggests a convenient graphical, domain-specific notation 

to specify the prototype architecture framework.  The framework specifies components 

using domain-specific icons. The Meta-model defines constraints, connections and 

available operations with components transparently to domain expert.   

In this domain, the reuse of hardware/software artifacts (platforms, sensors, 

controls) is common.  The challenge is to configure them into a prototype to examine a 

particular requirement.  This architecture description supports multiple communication 

strategies between components and the tool and automatically configures the necessary 

wrappers for the artifacts.   

This dissertation suggests a uniform framework for a component and 

documentation repository. A set of rules operate on the domain model to compose 

software components needed to create an aggregate system. The same set of rules 

composes documentation for aggregate system operation. As a result, users of the 

prototyping environment are able to stay at a high level of abstraction and need not 

concern themselves with the details of the composed and generated code.  



vi 

Simultaneously, the prototyping environment generates appropriate information for 

installation and operation of all parts of the system. 

 



vii 

TABLE OF CONTENTS 

I. INTRODUCTION........................................................................................................1 
A. PROBLEM STATEMENT .............................................................................1 
B. OBJECTIVE ....................................................................................................1 
C. MOTIVATION ................................................................................................3 
D. SUMMARY - SYSTEMS ENGINEERING APPROACH...........................5 

II. GROUND ROBOTICS BACKGROUND .................................................................7 
A. INTRODUCTION - THE COMING OF AGE OF GROUND 

ROBOTICS ......................................................................................................7 
B. POTENTIAL NEAR TERM ROBOTIC MISSIONS ................................12 

1. Under-vehicle Inspection...................................................................12 
2. Convoy ................................................................................................13 
3. Explosive Ordinance Disposal (EOD) ..............................................14 
4. Mine Clearing.....................................................................................14 
5. Scout ....................................................................................................15 
6. Perimeter Patrol.................................................................................15 

C. SENSORS .......................................................................................................15 
1. Proprioceptive Sensors ......................................................................16 
2. Mission Sensors ..................................................................................18 

D. SPIRAL DEVELOPMENT STRATEGY ...................................................18 
E. ODIS SPIRALS..............................................................................................19 

1. ODIS-A................................................................................................19 
2. ODIS-T1..............................................................................................21 
3. ODIS-T2..............................................................................................21 
4. ODIS-T3..............................................................................................21 

F. SUMMARY ....................................................................................................22 

III. RELATED WORK ....................................................................................................23 
A. INTRODUCTION..........................................................................................23 

1. Inspiration ..........................................................................................23 
a. Track Vehicle Workstation .....................................................23 
b. LEGO Mindstorms..................................................................24 

2. Robotic Development Environments ...............................................24 
a. Microsoft Robotics Studio.......................................................24 
b. iRobot Aware ...........................................................................25 

B. FEATURE MODELING...............................................................................26 
1. Feature Modeling, Discussion...........................................................30 

a. Advantages ..............................................................................30 
b. Disadvantages..........................................................................31 

C. MODEL-DRIVEN DESIGN.........................................................................31 
1. UML2.0 ...............................................................................................31 
2. Chrysler AG .......................................................................................32 
3. Embedded System Control Language..............................................33 



viii 

4. Architecture Analysis and Design Language (AADL) ...................33 
D. SUMMARY OF RELATED WORK ...........................................................34 

IV. ROBOTIC SYSTEM PROTOTYPING – EXAMINING EMERGING 
HARDWARE / SOFTWARE SYSTEMS................................................................35 
A. WHY PROTOTYPE?....................................................................................35 

1. Rapid Prototyping..............................................................................35 
2. Prototyping in DoD Acquisition .......................................................36 

B. PHASES OF A PROTOTYPE......................................................................39 
1. Inception .............................................................................................40 
2. Preparation.........................................................................................41 
3. Design..................................................................................................41 
4. Test ......................................................................................................41 
5. Analysis ...............................................................................................42 

C. CASE STUDY – AD HOC SPIRAL DEVELOPMENT OF THE 
OMNI-DIRECTIONAL INSPECTION SYSTEM (ODIS) ROBOT 
PROTOTYPE.................................................................................................42 
1. Introduction........................................................................................42 
2. Inception .............................................................................................42 
3. Spiral 0 ................................................................................................45 

a. Preparation / Design - Spiral 0...............................................45 
b. Test - Spiral 0 ..........................................................................45 
c. Analysis – Spiral 0...................................................................45 

4. Spiral 1 ................................................................................................46 
a. Design – Spiral 1 .....................................................................46 
b. Test – Spiral 1..........................................................................47 
c. Analysis – Spiral 1...................................................................48 

5. Spiral 2 ................................................................................................49 
a. Design – Spiral 2 .....................................................................49 
b. Test - Spiral 2 ..........................................................................50 
c. Analysis – Spiral 2...................................................................51 

6. Spiral 3 ................................................................................................51 
a. Design - Spiral 3......................................................................51 

D. SUMMARY AND DISCUSSION .................................................................52 

V. PROTOTYPING ENVIRONMENT REQUIREMENTS......................................55 
A. INTRODUCTION..........................................................................................55 

1. Preparation.........................................................................................55 
a. Artifact Wrappers....................................................................57 
b. Communications Components................................................60 
c. Optional Components .............................................................60 

2. Design Phase .......................................................................................60 
a. Top Level Design.....................................................................60 
b. Node Level Design ..................................................................61 
c. Code Generation .....................................................................63 

3. Test ......................................................................................................63 
4. Analysis ...............................................................................................64 



ix 

5. Summary – Prototyping Environment Requirements....................64 

VI. PROTOTYPING SYSTEM AND RESULTING PROTOTYPE 
ARCHITECTURES...................................................................................................65 
A. INTRODUCTION - ARCHITECTURE DISCUSSION ............................65 
B. ARCHITECTURAL ANALYSIS IS NECESSARY AT MULTIPLE 

LEVELS..........................................................................................................67 
1. Communications ................................................................................68 
2. Early Design Decisions ......................................................................70 
3. Transferable Abstraction ..................................................................71 

a. Component Repository............................................................72 
b. Users ........................................................................................73 
c. Foundation..............................................................................73 
d. Components.............................................................................73 
e. Meta-model..............................................................................74 
f. Domain Model.........................................................................74 
g. Putting it All Together ............................................................75 
h. Nodes .......................................................................................75 

C. SUMMARY - ARCHITECTURE ................................................................77 

VII. DESIGN OF PROTOTYPING ENVIRONMENT.................................................79 
A. DESIGN ASSUMPTIONS ............................................................................79 
B. MODEL-DRIVEN ENGINEERING ...........................................................80 
C. STANDARDS & TOOLS..............................................................................81 

1. Extensible Markup Language (XML)..............................................81 
2. Messaging............................................................................................81 

D. COMPONENTS.............................................................................................85 
E. DESIGN PATTERNS....................................................................................86 
F. META-MODEL .............................................................................................89 
G. DOMAIN-SPECIFIC MODEL LANGUAGE ............................................90 
H. CODE COMPOSITION / GENERATION .................................................91 
I. MODEL-DRIVEN DESIGN CONCLUSIONS...........................................93 

VIII. EXPERIMENTAL IMPLEMENTATION..............................................................95 
A. INTRODUCTION..........................................................................................95 
B. COMPONENTS.............................................................................................97 

1. Component Repository......................................................................97 
2. Components ........................................................................................99 
3. Documentation .................................................................................100 
4. Design Patterns.................................................................................101 

a. Observer Pattern ...................................................................102 
b. Adaptor Pattern .....................................................................105 

C. META-MODELING....................................................................................107 
1. Introduction......................................................................................107 
2. Why the Generic Modeling Environment?....................................107 
3. GME Concepts .................................................................................108 
4. Building the Meta-model.................................................................110 



x 

D. DOMAIN MODELING...............................................................................116 
1. Introduction to the Model ...............................................................116 
2. Configuring a Domain Model .........................................................118 
3. The XML Output from the Domain Model...................................128 
4. Translation........................................................................................130 

a. Introduction...........................................................................130 
b. Frame-Based Knowledge......................................................130 
c. Rule-base Program Discussion ............................................133 
d. Ruby.......................................................................................134 

E. RESULTS .....................................................................................................135 
1. Software Engineering ......................................................................138 
2. Coding Efforts ..................................................................................138 
3. Creating and Operating a Prototype System ................................139 

F. EXPERIMENT CONCLUSION ................................................................140 

IX. CONCLUSIONS AND RECOMMENDATIONS.................................................143 
A. CONCLUSIONS ..........................................................................................143 
B. RECOMMENDATIONS FOR FUTURE WORK....................................143 

1. Introduction......................................................................................143 
2. Component Repository....................................................................144 
3. Model Collections.............................................................................145 
4. Rules ..................................................................................................145 
5. Operational Environments and Run-time Environments............146 
6. Optional Component as Compositions ..........................................146 
7. Integration with Other Modeling Environments ..........................147 
8. Education Outreach.........................................................................147 

C. LIMITATIONS............................................................................................148 

APPENDIX A. ABBREVIATIONS AND ACRONYMS........................................151 

APPENDIX B. JOINT ARCHITECTURE FOR UNMANNED 
SYSTEMS (JAUS) ...................................................................................................153 
A. INTRODUCTION........................................................................................153 
B. ELEMENTS OF JAUS................................................................................153 

1. Domain Model ..................................................................................154 
2. Reference Architecture....................................................................155 

a. JAUS Components ................................................................156 
b. JAUS Messages .....................................................................159 

C. SUMMARY ..................................................................................................160 

APPENDIX C. GENERIC MODELING ENVIRONMENT 
EXPERIMENT XML FILES..................................................................................161 
A. INTRODUCTION........................................................................................161 

1. Experiment XML Paradigm File – Basic_Robot.xmp..................162 
2. Experiment XML Domain Model File – Basic_Robot.xme .........170 

APPENDIX D. RULES ..............................................................................................181 
A. INTRODUCTION........................................................................................181 



xi 

1. Rule Descriptions .............................................................................181 
2. Ruby Experiment File – basic_Robot.rb .......................................200 

LIST OF REFERENCES....................................................................................................221 

INITIAL DISTRIBUTION LIST .......................................................................................227 

 



xii 

 THIS PAGE INTENTIONALLY LEFT BLANK 



xiii 

LIST OF FIGURES 

Figure 1. A Robot’s Effective Area is the Overlap between the Signature Horizon 
and the Detection Horizon ..................................................................................... 9 

Figure 2. Sensor Fusion Example, a Block Diagram of the FLEXnav System [From 
Ref. [5]]................................................................................................................ 11 

Figure 3. Boehm’s Spiral Model for Software Development and Enhancement 
Illustrates How Progressive Phases Add More Detail [From Ref. [8]] ............... 19 

Figure 4. Feature Diagram for a Prototyping Environment ................................................ 28 
Figure 5. A Simplified DoD View of Technology / Requirements Interactive Push & 

Pull [From Ref. [27]] ........................................................................................... 37 
Figure 6. The DoD Joint Ground Robotics Enterprise operates within the DoD 

Acquisition Process [From Ref. [27]] .................................................................. 38 
Figure 7. An Idealized Prototyping Process Contains Inputs, Processes and Storage 

Elements as Well as Feedback............................................................................. 40 
Figure 8. Shown are selected Utah State University Omni-Directional Vehicles 

Developed under TARDEC’s Intelligent Mobility Program............................... 43 
Figure 9. Project History from 2000 to 2006, ODIS Spiral Development Timeline .......... 44 
Figure 10. Prototyping Environment Node Components Block Diagram Showing the 

Relationship between the Network, Wrapper Components and a Legacy 
Artifact ................................................................................................................. 56 

Figure 11.       ODIS Serial Command Packet, Binary Field Description ................................... 58 
Figure 12. JAUS Message 405h Set Wrench Effort (specification)...................................... 58 
Figure 13. Prototyping Environment, Conceptual Model for the Graphical User 

Interface ............................................................................................................... 61 
Figure 14. Node Programmer, Initial Condition ................................................................... 62 
Figure 15. Node Programmer, Final Condition..................................................................... 62 
Figure 16. UML Use Case Diagram for Top Level Database Architecture [From Ref. 

[32]]...................................................................................................................... 66 
Figure 17. Use Case Diagram for Top Level Prototyping Environment Architecture.......... 67 
Figure 18. UML Top Level Sequence Chart View for Software Engineer........................... 68 
Figure 19. UML Top Level Sequence Chart View for Domain Engineer ............................ 69 
Figure 20. UML Top Level Sequence Chart View for Programmer..................................... 69 
Figure 21. UML Top Level Sequence Chart View for Technician....................................... 70 
Figure 22. UML Views of the Robotic Prototyping System Node Run-Time 

Architecture.......................................................................................................... 76 
Figure 23. Visualization of the Number of Protocol Adaptors For Ad-Hoc Vs. 

Common Messaging Scenarios............................................................................ 82 
Figure 24. Connecting Two Federations Requires Only One Communications 

Adaptor ................................................................................................................ 83 
Figure 25. Translating Messages across Three Formats [After Ref. [38]]............................ 84 
Figure 26. Generic Modeling Environment, Meta-model of a Robotic System ................... 89 
Figure 27. Generic Modeling Environment, Domain-specific Modeling Workspace .......... 91 



xiv 

Figure 28. High Level Deployment View, the Relationship between Components, 
Models and Applications ..................................................................................... 97 

Figure 29 . Code Repository in Windows Directory Structure .............................................. 98 
Figure 30. The Observer Base Class, UML Model of the Java Observer Design 

Pattern ................................................................................................................ 102 
Figure 31. Collaborations for Components with Observer & Subject Roles Noted ........... 103 
Figure 32. The Adaptor Base Class, UML Model of Adaptor Design Pattern Class 

Structure............................................................................................................. 106 
Figure 33. Overview of the Generic Modeling Environment; Software Engineers 

Create Meta-models, Meta-models Generate Domain Modeling 
Environment, Domain Engineers Create Domain Models ................................ 108 

Figure 34. GME Screen Shot of Top Level Classes in the Meta-modeling 
Environment....................................................................................................... 110 

Figure 35. GME Screen Shot Showing Software Engineer Adding Attributes to 
Classes................................................................................................................ 112 

Figure 36. GME Screen Shot after Software Engineer Added Messages and Top 
Level Container.................................................................................................. 113 

Figure 37. GME Screen Shot of Adding an Explicit Constraint to the Meta-model .......... 114 
Figure 38. GME Screen Shot of a Complete Meta-Model for a Basic Robot..................... 115 
Figure 39. Hardware Block Diagram for Prototyping Environment Instantiation, 

Elements Include Legacy Artifacts Helper Computers and Network 
Environments ..................................................................................................... 117 

Figure 40. GME Screen Shot as Domain Engineer Initiates a Domain Model by 
Selecting the Basic_Robot Paradigm Defined During Meta-modeling............. 118 

Figure 41. GME Screen Shot as Domain Engineer Creates a New Model using the 
Basic Robot Paradigm........................................................................................ 119 

Figure 42. GME Screen Shot of an Initialized Top Level Domain Workspace; note 
the Domain-specific Icons for Legacy Artifacts................................................ 120 

Figure 43. GME Screen Shot as Domain Engineer Selects Artifacts for the Domain 
Model ................................................................................................................. 121 

Figure 44. GME Screen Shot as Domain Engineer Selects Artifact Enumerated 
Attributes............................................................................................................ 122 

Figure 45. GME Screen Shot as Domain Engineer Inserts an Artifact Text Attribute ....... 123 
Figure 46. GME Screen Shot as Domain Engineer Configures Message Passing.............. 124 
Figure 47. GME Screen Shot as Domain Engineer Attempts an Illegal Connection as 

Defined by Meta-model Constraint ................................................................... 126 
Figure 48. GME Screen Shot as Domain Engineer adds Adaptor, Communications 

and Optional Software Components that Configure the Artifact Wrappers ...... 127 
Figure 49. The “Basic_Robot” Feature Model in UML, Showing the Three Levels of 

the Model and the Cardinality of the Elements ................................................. 130 
Figure 50. Activity Diagram Showing Meta-modeling and Associated Efforts 

Necessary to Create a Domain Model ............................................................... 136 
Figure 51. Activity Diagram Showing Domain Modeling and Associated Efforts 

Necessary to Create a Final Product .................................................................. 137 



xv 

Figure 52. JAUS Domain Model, Model Elements are Enclosed Within the Shaded 
Rectangle. Functional Agents are Internal Rectangles, while Knowledge 
Stores are Ovals [From Ref. [35]]...................................................................... 154 

Figure 53. JAUS Reference Architecture Physical Topology [From Ref. [35]] ................. 155 
Figure 54. The Generic Modeling Environment Stores Meta-models and Domain 

Models as XML Files......................................................................................... 161 



xvi 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



xvii 

LIST OF TABLES 

Table 1. Fragment of XML Code Generated by Domain Model Instance ........................ 92 
Table 2. Different Levels of Dataflow Representations .................................................. 104 
Table 3. Basic XML Tag Concept for Rule Creation ...................................................... 129 
Table 4. Artifact Frame.................................................................................................... 131 
Table 5. Channel Frame ................................................................................................... 132 
Table 6. Dataflow Frame ................................................................................................. 132 
Table 7. Component Frames ............................................................................................ 133 
Table 8. JAUS Command and Control Components Necessary for System 

Integration .......................................................................................................... 156 
Table 9. JAUS Communications Component Maintains Data Links .............................. 156 
Table 10. JAUS Platform Components Report on and Control Platform State................. 157 
Table 11. JAUS Manipulator Components for Command and Control of a Robotic 

Arm .................................................................................................................... 158 
Table 12. JAUS Environmental Sensor Components to interact with the Platform 

Environment....................................................................................................... 158 
Table 13. JAUS Numerical Data Types [From Ref. [35]] ................................................. 159 
Table 14. Create an Array Artifacts, at each Artifact Create a Hash and Instantiate 

Information Frames for the Artifacts ................................................................. 181 
Table 15. Create an Array Channels, at each Channel Create a Hash and Instantiate 

Information Frames for the Channels ................................................................ 182 
Table 16. Match GME Generated ID Fields between Artifacts and Channels to Add 

Human Understandable Names to the Channel Information Frames ................ 183 
Table 17. Create Component Arrays for each Artifact, Create a Hash and Instantiate 

Information Frames for the Components as was Done for the Parent 
Artifacts.............................................................................................................. 185 

Table 18. Create an Arrays of  Dataflows associated with each Artifact, at each 
Dataflow, Create a Hash and Instantiate Information Frames for the 
Dataflows ........................................................................................................... 186 

Table 19. Match GME Generated ID Fields between Components and Dataflows to 
Add Human Understandable Information to the Channel Information 
Frames................................................................................................................ 188 

Table 20. Search the Components  for Adaptor Types, Register Supported Messages 
in the Artifact Frames (for future use) ............................................................... 189 

Table 21. For Each Artifact, Search find the Communications Parameters and Fill in 
Communications Fields in the Component Frames ........................................... 191 

Table 22. For Each Artifact, Create Folders in File System.............................................. 192 
Table 23. For Each Artifact, Copy the Component Files Matching Model 

Components from the Component Repository to the Appropriate Folder in 
the Working Directory ....................................................................................... 193 

Table 24. Search the Artifacts to Discover the Name of the Communications 
Destination Element........................................................................................... 194 

Table 25. Serial Port Error Checking, Check to Insure that Serial Speeds Match............. 195 



xviii 

Table 26. Configure IP Component Frame Fields with Proper Communications 
Constants............................................................................................................ 196 

Table 27. Description of Create Constants File Rule......................................................... 197 
Table 28 . Rule to create a Java Main Program for each Node........................................... 198 
Table 29. Rule to Create DOS .bat Command Files to Execute Java Commands that 

Compile and Run the Java Wrapper Applications on Each Node ..................... 199 



xix 

ACKNOWLEDGMENTS 

It would be impossible to list everyone who encouraged and supported me over 

the nine years that this effort spanned.  From co-workers near and far to my extended 

family and friends I was always able to count on a few words of encouragement. 

At US Army Tank Automotive Research Development and Engineering Center 

(TARDEC), I would like to first thank TARDEC’s Ms. Pame Watts, without whom this 

would never have happened. I would like to thank the late Dr. Mike Sabo, a friend and 

mentor, who convinced me this was something I should try.  I would like to acknowledge 

my Supervisors Tom Washburn at the start, Dr. Grant Gerhart in the middle and Dave 

Thomas at the end who provided unwavering support and encouragement.  Finally, I 

would like to thank my teammates in the TARDEC Robotics Mobility Lab for their 

support and enthusiasm.  Finally, I would like to thank TARDEC and TARDEC 

management over the years for their support of continued learning for engineers and 

scientists. 

I would like to thank those who served on my committee, Dr. Valdis Berzins, Dr. 

Luqi, Dr. Kevin Squire, Dr. Don Brutzman,  Dr. Barrett Bryant at the Naval Postgraduate 

School, and Dr. Jim Overholt from TARDEC.  I would especially like to thank Dr. 

Mikhail Auguston, my Advisor and Committee Chair for his insights and encouragement, 

especially over the last two years when this effort really began to take shape. 

Finally, I would like to acknowledge my family, my exceptional wife Pat and my 

two exceptional children, Craig and Gwendolyn.  Whenever I felt low or ready to stop, all 

I had to do was look to my family for encouragement. During the time I was working on 

this program, Pat finished a Masters of Business Administration. Craig finished high 

school, earned a BS and MS in Bio-medical Engineering, and in now studying for a dual 

MD, PhD at Northwestern Medical School.  Gwen finished middle school, high school 

and is now a senior studying Mathematics at the University of Chicago. 

 

 



xx 

THIS PAGE INTENTIONALLY LEFT BLANK 



xxi 

EXECUTIVE SUMMARY 

This effort describes a systems engineering approach to the design and 

implementation of software for prototyping robotic systems. Developing networked 

robotic systems of diverse physical assets is a continuing challenge to developers.  

Problems often multiply when adding new hardware/software artifacts or when 

reconfiguring existing systems.  

DoD needs tools and techniques that can accentuate current acquisition 

guidelines. Acquisition is requirements-driven. When requirements are not representative 

of the need, DoD wastes money and time. Initial requirements are often hasty, unclear or 

contradictory, particularly when generated based on current operational needs. Therefore, 

requirements analysis plays an important part in the DoD acquisition strategy.  A 

recognized tool to assist DoD acquisition professionals in their analysis is prototyping. 

This work describes a method to create model-based, graphical domain-specific 

languages for robotic system prototyping. Domain-specific languages use terms 

understandable to domain engineers as well as abstract software engineering decisions. 

This methodology enables domain engineers to create quality executable prototypes 

without being versed in the intricacies of software engineering. 

Software systems, like physical systems, require explicit architectural descriptions 

to increase system level comprehension.  Since non-software, specialists do most 

experimental and prototyping work, this effort suggests a convenient graphical, domain-

specific notation to specify the prototype architecture framework.  The framework 

specifies components using domain-specific icons.  

In the DoD robotics domain, the reuse of hardware/software artifacts (platforms, 

sensors, controls) is common.  DoD labs are often called on to examine proposed new 

uses of existing equipment or modifications to existing equipment. The challenge is to 

configure artifacts into a prototype to examine a particular requirement.   

A Meta-model is an architecture description of the system under consideration. 

The Meta-model defines constraints, connections and available operations with 



xxii 

components transparently to domain experts.  Software engineers use the Meta-model to 

define elements, connections and constraints.  The Meta-model has explicit definitions of 

the artifacts and their connections as well as constraints on the elements and the 

connections. 

The Meta-model translates into a domain-specific model. The domain-specific 

model supports multiple communications strategies between components and provides an 

output for a set of rules that automatically configure the necessary wrappers for the 

artifacts.   

This dissertation suggests a uniform framework for a component and 

documentation repository. A set of rules operate on the domain model to compose 

software components needed to create an aggregate system. The same set of rules 

composes documentation for aggregate system operation. As a result, users of the 

prototyping environment are able to stay at a high level of abstraction and need not 

concern themselves with the details of the composed and generated code.  

Simultaneously, the prototyping environment generates appropriate information for 

installation and operation of all parts of the system. 

This effort includes an example of applying the tools and techniques to a basic 

robotic system. A Meta-model for a constrained robotic development strategy (multiple 

input, single output artifacts) is created and described in a Defense Advanced Research 

Planning Agency (DARPA) developed tool.  The tool generates a domain model and an 

example domain application is developed.  A set of rules associated with the Meta-model 

paradigm operate on the completed domain model. The rules assemble and configure 

preprogrammed components and create a main program. The result is a set of programs 

to create an operational aggregate prototype system. 

 



1 

I. INTRODUCTION 

A. PROBLEM STATEMENT 

The Army has made a heavy investment in robotics and robotic sensor technology, 

both for current operations and especially for Future Combat System (FCS).   Both 

current robots and FCS rely on distributed assets communicating over wired and wireless 

networks, albeit on different scales.  Material developers need high-quality hardware and 

software prototype systems to conduct large tradeoff analysis in a reasonable time.  

Integrating artifacts to create a complete system is an arduous, time-consuming 

task, particularly when the requirements are poorly stated or understood.   Developers 

undertake prototyping efforts to refine and clarify requirements. Developers require tools 

to create rapid prototypes and the assumptions used in creating these prototypes must be 

captured.   

B. OBJECTIVE 

The objective of this work is to apply a systems engineering approach to 

developing new methodologies and tools for creating software to rapidly link disparate 

hardware and software items, such as Robot Platforms, Operator Control Units and stand- 

alone Software Controls. Currently, engineers create most prototype software by hand in 

an ad hoc fashion. Ad hoc processes lead to much rework and many non-reusable 

software modules. The engineers creating the modules are usually not software experts. 

They may be talented, but they are not versed in the intricacies of current software 

engineering practices.  The codes produced are subject to “rot,” particularly when the 

engineer that produced them moves on to another project.  

The suggested approach leads to definitions of tools and techniques to transfer 

software engineering expertise to domain engineers, who are not necessarily versed in 

software engineering.  The suggested tools allow software engineers to build models in a 

language understandable to software engineers, Unified Modeling Language (UML) for 

example, then translate and abstract the software engineering models into domain-



2 

specific models understandable to domain engineers. The design of models and 

associated software components considers preservation, along with documentation, up 

front to facilitate reuse.  

The methodology includes automatic generation of software to simplify 

development of distributed, embedded and real-time robotic systems. This work extends 

into the more general case of communicating heterogeneous distributed systems. 

Automatically generated code allows insertion of legacy and newly developed artifacts 

into a prototyping environment.  The code intercepts artifact functions and binds them 

with functions needed to exercise the artifacts outside of the native environment.  

Wrappers and glue code are tailored the current state of the prototyping environment.  

Automatic generation of the code will enhance the development environment by reducing 

rote work and producing consistently behaving module interfaces. 

The major contributions of this effort are tools and techniques to transfer software 

engineering expertise to domain engineers. 

− This effort discusses in depth a method to specify model-based architecture.  An 

abstract software engineering Meta-models defines a system paradigm.  This 

Meta-model will constrain the operations available to the domain engineer, which 

will enable creation of a family of domain models using a common message set 

and reusable, pre-defined software components.   

− The domain-model is a graphical model with domain-specific notation.  Icons of 

the model will be familiar to the domain engineer as hardware and software 

artifacts of interest. Each artifact will be wrapped wit a set of configurable 

components to translate between legacy protocols and a common message 

protocol; add instrumentation; and enable artifacts to communicate via an 

arbitrary network protocol 

− A set of rules operate on the completed domain model to generate and compose 

software needed to create an aggregate system for prototype operation.  The rule 

set composes documentation along with the software.  The documentation will 

guide the prototype user in setup and operation of the prototype. 



3 

− Self-documentation.  Domain engineers create prototypes using application 

specific models from a domain paradigm predefined by a Meta-model.   

Predefined and coded software objects are available in the prototype system 

Assembly takes place within a domain-specific model that is an offspring of a 

Meta-model.  The approach saves both for future reference. 

− Simplify the software development process by using standard message sets 

defined in XML.   Proprietary commands create a “Tower of Babel” effect.  

Attempting to extended systems with third-party hardware or software is difficult 

and time-consuming.  Wrapping legacy items and emerging items with adaptors 

that interface a common message set reduces rework and increases the potential 

for interoperability in the prototype environment.  The prototype systems create a 

set of concise requirements to facilitate production systems.  

C.  MOTIVATION  

In virtually every case when the military seeks to develop a system, initial 

requirements do not fully represent the final solution. Members of the Army and other 

Research and Development communities often receive requirements for a new system or 

an upgrade of a system that depend on capabilities that do not yet exist. The requirements 

need to be refined, tuned and better understood.  One of the most powerful tools to 

accomplish this is to create prototypes and use them in a limited test.    Therefore, 

prototypes should be amenable to instrumentation.  Developers specifically configure 

prototypes to measure some aspect of the system, either internal or external.  In either 

case, straightforward interfaces are necessary for the engineers and technicians creating 

and operating the prototype.  The prototype, in its environment, must capture information, 

both about the configuration of the prototype and the results of running it. 

Considering the steps in creating a system, if development proceeds in an ad-hoc 

fashion, all too often a considerable amount of information is lost; mainly due to the lack 

of feedback and lack of documentation requirements in ad hoc development. In general, a 

system creation has four steps: 



4 

− Initiation – Someone has an idea, or a need.  It may be refined and matured 

informally or semi-formally.  The need may come directly from the user, or 

someone may perceive a user need and move toward inventing a solution to fulfill 

that need.   

− Requirements – A review of the need translates it into a requirements document.  

In the military, the need may be expressed in a short (as little as one page) 

Operational Need Statement (ONS) or Urgent Need Statement (UNS). A chain of 

command for review validates the need statement and system developers receive 

the document.  An inventor may perform this step informally, or via research 

proposals.  A subsequent team attempts to formalize the requirements and create a 

structured requirements document. 

− Design – A design team acts on the requirements document. The design team does 

their job and creates a scope-of-work.   

− Implementation - The implementation team creates an artifact that, if all went 

well meets the need of the original idea.   

Of course, this is a highly idealized scenario.  Unfortunately, often there is some 

disconnect in the four steps, ending in an unacceptable result to the customer.   Many 

things can go wrong at each level.  The original idea may be too complex; the original 

idea may request physically impossible attributes, unreasonably expensive attributes or it 

may have conflicting attributes.   In addition, access to the originator of the idea is 

usually not available, or difficult to obtain.  In some cases, the requirements may not be 

fully obtainable due to technical obstacles.   The design team may misinterpret 

requirements, or the requirements may not fully capture the idea.  Finally, 

implementation decisions may render the product unusable in the target environment. 

This is of course why researchers and developers create prototypes.  Early 

creation of prototypes prevents misunderstandings from propagating through the 

development cycle.  If created properly, the prototype facilitates information capture and 

produces a satisfactory product.   



5 

Yet another aspect of prototyping is spiral development.  Organizations are 

increasingly implementing spiral development to produce partial solutions.  Spiral 

development prototyping is useful when requirements are unclear, technology gaps are 

known and to address cost issues. 

D. SUMMARY - SYSTEMS ENGINEERING APPROACH 

A systems engineering approach is defined by the DoD [1] as a problem-solving 

process used to translate operational needs and/or requirements into a well-engineered 

system solution.  It is an interdisciplinary approach.  It includes engineers, technical 

specialists, and customers. Systems engineering creates and verifies an integrated and 

life-cycle-balanced set of system product and process solutions that satisfy stated 

customer needs.   

This effort addresses prototyping efforts at the early part of a system life cycle but 

treats the prototyping process as a mini-life cycle within the larger procurement effort.  

An interdisciplinary team interacts with the various phases of the prototype and creates a 

set of interrelated products to produce rapid prototypes.  The results of the prototype 

evaluations are included as products in the larger effort. The individuals within this effort 

may play a part in the larger effort as time goes on or not, but the process preserves 

prototype effort intermediate results for use, as needed, in future segments of the system 

life cycle.  

 

 

 
 
 
 
 
 
 
 
 
 
 



6 

THIS PAGE INTENTIONALLY LEFT BLANK 

  
 



7 

II. GROUND ROBOTICS BACKGROUND 

A. INTRODUCTION - THE COMING OF AGE OF GROUND ROBOTICS 

News articles since the beginning of the Wars in Afghanistan and Iraq abound 

with stories of how unmanned aircraft have made significant contributions to the war 

effort.  Flown from many miles away, even as far as halfway around the world, they have 

brought a new element to our fighting capability.  Initially flown for reconnaissance, they 

have since been fitted with armament and take aviators out of harms way.   

News articles immediately began to chronicle the impact of ground robots on our 

war efforts.  Unlike their airborne brethren, soldiers more typically control ground robots 

in the areas where they operate.  Smaller in size, and operating among the obstacles on 

the ground, they have difficulty communicating with satellites; they also cannot survive 

the time delays that a long-range communication link imposes.  (Typically launched and 

landed locally long-range Unmanned Air Vehicle control transfers to a distant remote 

pilot at cruising altitude).  Nonetheless, particularly in Explosive Ordnance Disposal 

(EOD), inspection and scouting missions, small robots are coming of age. 

An article in the December 2004-Wired Magazine [2] describes a Foster Miller 

Talon Robot equipped with a weapon.  A human operator controls the robot from out of 

the line of fire.  Soldiers and robot developers say it only makes sense; robots do not have 

a family at home, robots do not get tired and robots are replaceable.  On the other hand, 

armed robots are a tremendous paradigm shift for the Army.  In 2003, even small tele-

operated robots generated suspicion and sometimes even outright disdain.  Even though 

Army Transformation via Future Combat System calls for armed robots, the Army did 

not expect them for at least a decade.  The Army still needs to work out important issues 

of training, tactics and safety completely, but commanders on the ground and the course 

of the war are accelerating efforts. 

One of the reasons for this change of heart is the phenomenal success of the 

ground robots deployed in Iraq and Afghanistan beginning in 2004.  The deployment of 

EOD robots to counter Improvised Explosive Devices (IEDs) has made a significant 



8 

contribution to the safety of EOD technicians.  The Army Rapid Equipping Force (REF) 

deployed Omni-Directional Inspection System (ODIS) robots for Traffic Control Point 

vehicle inspections.  These robots provide the operators with all-important standoff from 

potential explosive devices, and get them out of the line of fire during ambushes often 

associated with a contrived situation. 

The Army can use Unmanned Ground Vehicle (UGV) technology in a number of 

ways to assist in counter-terrorism activities now.  In addition to the conventional uses of 

tele-operated robots for unexploded ordnance handling and disposal, water cannons and 

other crowd-control devices, robots can also be employed for a host of terrorism 

deterrence and detection applications.   As recently as 2004, users were not ready for 

fully autonomous vehicles [3]. By 2006, units began to request autonomy for repetitive 

behavior.  There are many dangerous missions in Military and Homeland Defense 

operations.  Research engineers need to respond quickly to emerging threats and enemy 

tactics.  The current threats are often booby traps, Improvised Explosive Devices (IED), 

car bombs and suicide bombers. These are often low-signature devices, with a large 

danger zone. The task is to create tools to detect and neutralize threats from within the 

danger zone, while keeping our soldiers safe (see Figure 1). 

These tools include robotics and sensor networks. They need to be effective 

within the danger zone, as well as operate in a timely fashion. To increase operational 

efficiency, military requirements are now including autonomous mobility attributes; 

however, many in the robotics community hold to the tenet that there is a complex 

intertwining between autonomous vehicle behavior and autonomous mission 

understanding.  Researchers believe that they should develop robots with autonomous 

mobility in parallel with mission sensor understanding.  The robotics community needs 

tools and techniques to make the process efficient and effective. 

 



9 

 

Figure 1. A Robot’s Effective Area is the Overlap between the Signature 
Horizon and the Detection Horizon 

 
The US Army Research Institute conducted Human performance studies to 

explore new approaches for battle command as may be experienced by soldiers using the 

Future Combat System (FCS).  FCS concepts call for unprecedented integration of 

automation, sensors and robotics.  One of the FCS goals is to reduce the size of the 

command group.  An FCS challenge is to find the optimum workload for command group 

soldiers.  As expected, as workload increases, at the “too-high” levels of complexity, the 

information and battle space managers’ performance drops sharply [4].  The robotic 

system developer’s challenge is to invent fused sensor information and mission 

awareness tools to reduce the amount of information that the humans in the loop need to 

process and communicate to their associates.  

 
Danger 
Zone 

 

SSaaffee  ZZoonnee  
 

Threat 

Signature  
Horizon 
 

Detection  
Horizon 
 

Sensor 
Platform 
 

OOppeerraattoorr  
  

Threat 
Range 
 

Effective 
Area 



10 

In order to reduce the levels of complexity introduced to the soldier on the 

battlefield, or the first responder in a disaster situation, researchers in the robotics 

community plan to increase levels of autonomous mobility for robotic systems.  

Autonomous mobility is made possible by creating hardware-software systems to fuse 

sensor data, creating mission-planning algorithms and creating mission-execution 

algorithms.     

Sensor Fusion is a complex interaction of proprioceptive sensors and algorithms 

to provide a composite indicator of a parameter of interest, such as position or obstacles.  

A human analogy is what humans call flavor, a fusion of taste, smell and texture.  Fused 

sensor data may be layered; continuing the human analogy, taste is the fusion of salty, 

sour, sweet,  bitter and umami taste sensations.  An example of robotic sensor fusion is a 

navigation package composed of several different types of sensors. For example, Ojeda 

and Borenstein fuse three different types of proprioceptive sensors in their FLEXnav 

system [5]. 

FLEXnav collects gyroscopic information, wheel encoder outputs and 

accelerometer outputs into a fuzzy rule based system (Figure 2).  This expert system 

outputs attitude estimates.  The attitude estimates are collected and joined with the same 

wheel encoder outputs in a second expert system to estimate position.  The simple 

interface to this complicated software package is a simple {x,y,z} triplet. 

Mission Planning is another complex aggregate of available fused sensor 

information, algorithms and à priori real world data, combined with current operational 

requirements. Mission planning for a robotic convoy includes physical or temporal 

separation of vehicles in the convoy and their positions within the convoy, as well as 

route preferences.  An real-time inspection mission plan would include using fused 

sensor information to determine the geometry of the vehicle (tire positions, bumper 

positions, physical location, etc.), and then creating a driving path for the robot to obtain 

maximum coverage of the vehicle undercarriage. 



11 

 
Figure 2. Sensor Fusion Example, a Block Diagram of the FLEXnav System 

[From Ref. [5]] 

 

 Mission execution uses real-time information provided by fused proprioceptive 

sensors and the mission plan to accomplish the mission.  Mission execution may also 

involve operation and fusion of mission sensors, as well as other mission packages 

including manipulators.  In complex scenarios, mission execution may involve 

communicating with other assets, such as other robots or fixed sensors. 

Developers overlay mission awareness onto the autonomous mobility to fuse data 

from mission sensors in order to provide a composite indicator of threat to the operator. 

This is the key to successful autonomous operation.  The goal is to provide some 



12 

hardware/software modules to reduce the data load on the operator and/or enable 

automation of robotic operation [6]. The first goal is to remove personnel from the danger 

zone.  In automotive applications, manufacturers can sometimes create sensitive sensors 

that alert the operator to a hazard in time for human reaction. For military and police 

activities, this is often technically unfeasible or cost-prohibitive; a solution is to move 

sensors into the danger zone on a robotic mobility platform.  In either case, the key is 

creating modules to interpret sensor data and alert the human operator that a hazard is 

near.  

Integrating these modules is a software intensive task in most cases, since the 

software modules involve non-deterministic algorithms. Engineers and researchers 

implement the algorithms within artificial intelligence tools, such as expert systems and 

neural networks. These types of tools involve intensive prototyping and training for 

particular situations.  As the situation changes, either due to new enemy tactics or due to 

new missions, the algorithms or training sets often need updating. New sensors, both 

proprioceptive and mission, are becoming available due to intense research and rapid 

commercialization. To be responsive to user need, researchers must have tools and 

architectures in place to rapidly integrate sensors, mission planning, mission execution 

and mission awareness modules as they mature. 

B.  POTENTIAL NEAR TERM ROBOTIC MISSIONS 

This section describes selected robotic missions that are current topics for both 

sensor and autonomy research.  Many have common characteristics, such as 

communications, mission package interfaces and proprioceptive sensor requirements.  

Others have diverging requirements, such as safety, that depend on their application as 

well as the vehicle size and operation scenarios. 

1. Under-vehicle Inspection 

Vehicle inspections at critical checkpoints have always been an important part of 

area security scenarios. At the most secure locations, soldiers routinely conduct real-time 

inspections to both detect and deter transportation of contraband, and bombs.  Soldiers 

typically conduct these inspections manually by physically climbing under-vehicles or 



13 

with a so-called “mirror on a stick.”  In either case, the inspector exposes himself to the 

vehicle under inspection and must attempt to inspect relatively dark and inaccessible 

cavities. 

Some relatively simple autonomous tasks are under consideration, such as 

automatic staging and parking.  Tasks that are somewhat more difficult include 

autonomous path planning in the presence of additional axles and/or trailers, as well as 

lines of vehicles. 

A more difficult computing problem presents itself when considering mission 

understanding for under-vehicle inspection.  Experiences at vehicle checkpoints tell us 

that human inspectors are good at noticing anomalies.  That is, they do not memorize 

under-vehicle configurations.  The inspectors notice shiny things, unusual lumps or 

panels, disturbed areas or extra dirty areas.  These indicators may not only alert the 

operator, but also feed back into the inspection vehicles motions as the operator 

maneuvers to get a better look.  This scenario is certainly not amenable to deterministic 

computing, but it has the potential to become progressively more doable as adaptive 

computing techniques mature. 

2. Convoy 

Military Definition: A group of motor vehicles organized for the purpose of 

control and orderly movement with or without escort protection. The Army also defines a 

convoy as any group of six or more vehicles temporarily organized to operate as a 

column with or without escort proceeding together under a single commander, or the 

dispatching of 10 or more vehicles per hour to the same destination over the same route.  

Future Army robotics applications talk about convoys as leader-follower operations.  

Leader-follower operations can be familiar columns of vehicles or vehicles separated by 

up to a day.  Obviously, in the latter case, each follower vehicle will be an autonomous 

vehicle following a pre-defined route.  The route may have experienced changes during 

the time since the leader passed that requires a reaction from the follower. 

 



14 

3. Explosive Ordinance Disposal (EOD) 

EOD Robots are traditionally tele-operated. Increasingly, though, features that 

make the task easier for the operator, such as preprogrammed arm positions, are being 

included. One should note, however, that there are a number of tasks that may seem 

simple, but are often hard problems for robots; collecting played out fiber optic cable is 

one. 

As technology capability increases, mission assessment packages will become 

more important.  It is routine to blow up a suspect package today, because technological 

aids for risk assessment are not available.  In the future, miniature x-ray and chemical 

detection equipment will be on board the EOD robot, often thus reducing or eliminating 

this necessity.  

In many cases, it is desirable not to explode a found bomb, but to disassemble and 

analyze it.  In some cases, exploding a found bomb will cause damage to surrounding 

infrastructure (consider a large bomb near glass-walled high-rise buildings). In cases such 

as this, it might be desirable to have two or more EOD robots working together to either 

move or contain and disable the explosive. 

4. Mine Clearing 

Mine clearing is now typically accomplished using specialized equipment.  Often 

it is a heavy combat vehicle with mine plows or rollers attached.  Increasingly, however, 

military units are disabling anti-personnel mines by beating them with chains attached to 

a flail mechanism on a lightweight construction vehicle, similar to a bobcat.   

These are brute force methods, and not 100-percent effective.  Future operations, 

especially in heavily mined areas like Afghanistan will require a new paradigm in mine 

detection, marking and defusing.  Robots performing this work will often have their 

mobility functions working in coordination with their mission packages; again, a highly 

non-deterministic problem. 

 

 



15 

5. Scout 

Scout operations imply that a robot will autonomously take a journey into 

uncharted territory, inside a building, a cave, a tree line or several kilometers into an 

urban area.   The mobility and navigation package must work closely with the mission 

package.  Suspicious activities detected and recorded by the mission package must be 

transmitted back to the base and prompt the modification of operations to increase stealth, 

trigger retreat procedures or both.  In scout operations, certain maneuvers may deny 

sensor data (e.g., Global Positioning System (GPS) data is not available under dense 

foliage) requiring the triggering of alternate sensors or behaviors.  

6.  Perimeter Patrol 

Perimeter patrol is somewhat like scout, but with a more defined world map.  

Perimeter patrol robots must obviously work with their detection and suppression mission 

packages to control the mobility packages. 

An interesting solution to perimeter patrol is a fully robotic network of ad-hoc 

sensors.  A host or mother robot has a payload consisting of a number of small robotic 

sensor platforms.  The mother robot learns a route, perhaps from a soldier walking or 

driving the perimeter.  The mother robot dispenses the smaller sensor platforms to 

provide full coverage of the perimeter.  Depending on the situation, the sensors can be 

either active or passive.  In the active state, they may recall the mother robot and/or 

human guards when a threat is detected.  In the passive state, they may just record 

information and wait for the mother robot to make a pass and relay the data over a low 

power link.  At the end of the mission, the small mobile sensors return to the mother 

robot as it passes and are available for reuse. 

C. SENSORS 

Two classifications of robotic sensors are proprioceptive sensors and mission 

sensors.  In some cases, there is overlap or a single sensor has more than one purpose.  

For instance, a camera used for navigation is also as a visual mission package.  The 



16 

output from the sensor package routes to two different analysis packages simultaneously. 

A dazzling array of sensors is available today in both groups. 

1. Proprioceptive Sensors 

Proprioceptive sensors are for navigation and health monitoring of a robot.  These 

sensors may be simple, such as an Infrared (IR) bump sensor, or complex, as in a stereo 

night vision system.  Often, on high-end systems, they are an array of complex sensors 

with fused data output.  In any case, there are rules or implied consequences when a 

sensor triggers or when a complex sensor output analysis indicates a distinct outcome.  

In some cases, a singular sensor output will cause an action, i.e., a bump sensor 

triggers a stop and reconsiders action.  In other cases, there will be conflicts.  As long as 

the conflicts are few and simple, the robot control uses distinct low-level rules, possibly 

governed by a low-level arbitrator. However, as the quantity, quality and information 

output of sensors increases to levels required to operate in an arbitrary real world 

environment, a combinatorial explosion occurs and it is no longer feasible to anticipate 

every low level action.   

In military robotic systems, the desire for autonomous operation requires a 

plethora of sensors for even relatively simple navigation tasks.  Military combat vehicles, 

by definition, operate in an unstructured environment. Multiple Visual, Infrared, LIDAR, 

RADAR, and others are needed to understand the near road, far road and road edges.  A 

complex world map needs to be created and updated on the fly.  When the vehicle goes 

off road, the processing required becomes even more difficult.  Is a stand of grass or a 

leafy branch hiding an impenetrable obstacle?  Is the vehicle about to drive into a ditch or 

off a cliff?  These are decisions made by human operators regularly. 

In civilian or tactical military systems, the situation is even more complicated.  

Yes, there may be a structured environment; yes, there may be active sensors in or near 

the road to aid operation.  Nevertheless, real world situations do include anomalies: 

unauthorized pedestrians, breakdowns and repair crews to name a few. 



17 

At the June 2005 North American Fuzzy Information Processing Society 

(NAFIPS) conference, during a Fuzzy Logic panel discussion, one of the panelists, Dr. 

Lotfi Zadeh, made a comment about the infancy of fuzzy systems.  He stated that humans 

could drive an automobile without consulting any sensors at all.  By this, he meant that 

they were using their senses and contact with the vehicle, as well as their experience.  It 

is not necessary to monitor the speedometer closely; there is no acceleration gauge and 

GPS coordinates are meaningless to the average driver.  During the International Society 

for Optical Engineering, (SPIE), Defense & Security 2006, Intelligent and Unmanned 

Systems conference an audience comment was that many people drive on Urban 

Interstate Highways every day and use behaviors, such as following the car in front of 

them at a distance at which it is impossible to stop if the vehicle in front panic-stops. Yet 

they are able to find visual cues to prevent many of these collisions.  The stated 

implication, in both cases was, “Why can’t we automate driving?” 

The answer is that human drivers use heuristics to judge when our driving 

behavior is safe, and this works perfectly well for all but about 40,000 people a year who 

die in about 3,000,000 traffic incidences each year [7]. Autonomous systems are held to a 

higher standard. The populace would never accept an automated system that drives 

anywhere nearly as bad as a person.  Sensor systems added to vehicles to increase 

autonomy also have to have a safety aspect, as well as a capital aspect.  Civilian efforts in 

ground vehicle autonomy focus on highway safety, but may also have a convenience 

factor as a consumer selling point.  Military efforts in ground vehicle autonomy may have 

additional aspects, but the military trains and transits on civilian highways, and must at 

least meet the civilian goals. 

This discussion leads to a major focus for prototyping robotic systems, that is, 

safety.  Cost is always a driver; prototype sensors need to be integrated into systems for 

test purposes, fused with other sensors and tested again.  Often the prototype sensor is 

expensive and in short supply.  Tools that help to accommodate the availability of 

hardware in a test environment are also in short supply. 

 



18 

2. Mission Sensors 

Mission Sensors may or may not be part of the proprioceptive network on the 

robot.   They may stand-alone or they may trigger higher-level mobility responses in the 

robot.  For instance, if the robot has a vision package with image understanding, it may 

trigger on an anomaly and request that the robot perform a maneuver to rescan and take a 

closer look with the camera zoomed. 

Other mission scenarios depend, by design, on mission sensors.  A mine detector 

mission package may trigger a marking response on the robot, initiate a defeat device 

and/or initiate a mobility maneuver to avoid prematurely detonating the mine. 

D. SPIRAL DEVELOPMENT STRATEGY 

The TARDEC Robotics Mobility Lab (TRML) is the target organization for the 

first working versions of this effort. TRML has subscribed to a spiral development 

strategy for robotics since the late 1990’s.  This strategy has been particularly effective 

for development of the Omni-Directional Inspection System (ODIS) robots.  Experiences 

in Software Engineering lead to this approach.  It requires early user involvement to 

mitigate risk.  

Spiral development [8] is an evolutionary, risk-driven approach to system 

development. The spiral development process for software development (Figure 3) has 

been successfully used in a number of DoD software acquisitions and fits well with the 

DoD Instruction 5000.2 preferred evolutionary acquisition strategy The spiral 

development process requires user involvement and frequent testing; it is particularly 

useful when the system requirements are not known up front. 

A complete spiral cycle includes 1) client communication, 2) planning, 3) risk 

analysis, 4) engineering, 5) construction and 6) client evaluation. For each cycle (spiral) 

the client and developer closely work together to ensure a functional prototype. They 

reassess risks and assumptions to meet current contractual requirements while leaving 

room for future growth.  

 



19 

 
Figure 3. Boehm’s Spiral Model for Software Development and Enhancement 

Illustrates How Progressive Phases Add More Detail [From Ref. [8]] 
 

E. ODIS SPIRALS  

1. ODIS-A   

ODIS-A was the original vehicle in the ODIS series.  It was the outcome of 

ongoing Army-University basic research conducted cooperatively between TARDEC and 

Utah State University.  

 



20 

ODIS-A was a convergence of several lines of research: 

− Autonomous path planning; 

− Autonomous path execution; 

− Autonomous control of multiple intelligent wheels; and 

− ODIS-A was also a practical follow on to the T-series robots. 

Late in 2001, TARDEC conducted an ODIS–A robot demonstration for guards at 

the Tank Automotive Command (TACOM) front gate.  The guards showed no inclination 

to use the autonomous features, so the next turn of the spiral resulted in a simplified, tele-

operated version of ODIS. 

As mentioned, the ODIS project was originally a basic research project.  After the 

attack on the World Trade Center on Sept 11, 2001, need for frequent under-vehicle 

inspection became apparent. The TRML examined current activities and revised the 

Omni-Directional Vehicle project goals.  A new goal was to provide tools to soldiers, 

guards and first responders as soon as possible.  This included releasing partial solutions 

as they matured to the point where they fulfilled emerging requirements.  This project 

was important to local and Army organizations, as well the TRML customer, the DoD 

Joint Robotics Program, because it was the only project with realizable budget and 

timelines that was completely in control of government labs.  This meant the TRML was 

in a unique position not only to develop tools that were essential to the safety of 

operational personnel, but could apply the spiral development process and demonstrate 

how to apply the process to other emerging missions. 

The ODIS project progressed from several hand-built tele-operated robots to a 

semi-production unit.  The original robots were used for initial interaction with users, 

including members of the Army Force Protection community, police departments and 

border security agents. The second version was deployed in Iraq and Afghanistan with 

operational units for a long-term experiment that continues to this day.  The spiral 

development paradigm developed in the ODIS project is widely heralded as a model of 

rapid transition of Army-developed technology to the soldier in the field. 

 



21 

2. ODIS-T1   

Utah State University built three ODIS-T1 robots. The three ODIS-T1 robots 

participated in several user experiments, including a Limited Objective Experiment at 

Fort Leonard Wood in 2002 [9] and a Demonstration Project at the Ports of Los Angeles 

and Long Beach (POLA/POLB) in 2003 [10]. 

3. ODIS-T2 

Work with the three ODIS-T1 robots led to a hardened, semi-manufacturable 

prototype, ODIS-T2.  The ODIS-T2 featured a ruggedized body and a wearable Operator 

Control Unit.  Delivery of ODIS-T2 units to Iraq and Afghanistan started in 

February/March of 2004.  Additional deployments followed as well as a deployment to a 

camp in Qatar, where it operated without fault for the duration of a six-month experiment.  

Lessons learned with ODIS-T2 are leading to the final mobility prototype, ODIS-T3. 

4. ODIS-T3  

ODIS-T3 features modular wheels for maintainability, as well as an option for 

off-road wheels.  Other features include support for mission packages, such as arms and 

sensors as well as lower cost internal components. 

With the introduction of the ODIS-T3, additional development spirals are already 

under way.  One spiral is investigating multi-spectral sensor integration for under-vehicle 

change detection [11].  This mission understanding spiral has several facets and internal 

Army researchers and university researchers are working on it semi-independently. 

Another spiral will take advantage of improved sensor support and 

communications in the ODIS-T3 robot.  Neural-Fuzzy Controllers for Autonomous 

Reactive Navigation [12] are under investigation for integration into the ODIS robot.  

Combined with the above-mentioned mission understanding spiral, autonomous 

inspection behaviors will soon be possible. 

 

 



22 

F. SUMMARY 

Since 2004, robots have become an integral part of many military operations.  

Robots perform the “dirty and dangerous” jobs today. EOD and scout missions 

predominate today.  Convoy, patrol, mine clearing and inspection missions are desirable 

in the near-term.  

Military organizations, encouraged by the successes are looking to robotic 

researchers to develop new capabilities. In parallel, University, Industry and Government 

researchers are developing new capabilities, both in platforms and in sensors.  

Spiral development strategies deliver the best of the current technology to soldiers 

now.  The ODIS project was an early example of a spiral development applied to a small 

research robot fielded in a short time.  Additional spirals improve the capability or add 

new functions for additional missions. 

 
 
 



23 

III. RELATED WORK 

A. INTRODUCTION 

The effort touches several research areas.  There are some efforts directly related 

to robotics, but there is more related work at a higher level of abstraction investigating 

design and construction of embedded systems in general. 

1. Inspiration 

a. Track Vehicle Workstation 

The Track Vehicle Workstation [13] (TVWS) was a research project to 

allow assembly of dynamic models of tracked vehicles from a collection of hardware 

component models. In the TVWS, highly parameterized components were stored in a 

database.  The components were accessible via the parts browser (a visualization of the 

database tree).  Components selected from a parts browser were copied into a model tree.  

Once copied, drop down forms became available to parameterize the components.  A 

completed TVWS model was then “compiled” and researchers conducted an input model 

to a dynamic analysis program.  The TVWS had a collection of tools to monitor 

execution of the dynamic analysis and to post-process the results. 

TWVS had a few insurmountable shortcomings: 

− The TVWS project depended on closed tools.  The TVWS 

software could not keep up with changes to the underlying 

commercial software products. 

− It was specialized to interface to a Cray2 supercomputer.  When 

the Cray2 was decommissioned, the cost benefit to port the TVWS 

could not be justified. 

− The projected users were ambivalent toward the TVWS.  The 

domain experts that were to provide components saw TVWS as a 

threat. 



24 

− The development team was composed primarily of mechanical 

engineers that were new to software development and 

documentation suffered. 

b. LEGO Mindstorms 

LEGO Mindstorms™ is a very sophisticated toy [14].  It educational uses 

range from in middle school science projects, to college-level introductory AI courses.  

The hardware is restricted, but robust enough for recreational and educational purposes.  

The computer RCX “brick” is based on a commercial microcontroller and can be 

programmed with Lego’s supplied GUI or with freely downloadable programming tools, 

NQC or RCX-ADA to name a few.  The GUI environment is the inspiration.  The GUI 

provides restricted software architecture to allow programming of the RCX by young and 

inexperienced users.  Children as young as eight years old have been able to successfully 

program LEGO robots after as little as an evening of tutorials.  The GUI is severely 

restricted, and often described as grade-schoolish, but it represents an intentional 

architecture and exhibits all the elements of such an architecture: components, 

connections and constraints.  It is robust in its intended environment, and if its 

marketplace success is any indication, it has achieved its goal. 

The LEGO Mindstorms™ GUI features drag-and-drop components that 

correspond to LEGO components.  It has parameters to control how the hardware 

components interact with the program.  It has timers and conditional controls built in.  

But it is not extensible; the GUI cannot accept new components.    

2. Robotic Development Environments 

Two significant proprietary efforts related to robotic software development have 

emerged during the span of this research. 

a. Microsoft Robotics Studio 

Microsoft Robotics Studio builds on the Visual Studio product and with it 

hopes to fuel the “Home Robotics Revolution” [15].  Robotics Studio has components to 

interface with Lego™ and iRobot Roomba™ robots. The Robotics Studio predicates a set 



25 

of libraries to create controls for Robotic systems.  At this point, it seems immature and   

seems to cater to the robotics hobbyist.   

On the other hand, home robotics is in its infancy, while military robotics 

is rapidly maturing.  The Robotics Studio has possible synergy with this effort.  Microsoft 

has expressed interest in the Joint Architecture for Unmanned Systems, as well as in 

pursuing cooperative efforts with Robotics Labs at the Army’s Tank Automotive 

Research and Development Center (TARDEC) and with the DoD Joint Ground Robotics 

Enterprise.  Hung Pham, co-chair of the Object Management Group’s Robotics Domain 

Task Force, has expressed his excitement in [16].   

Microsoft Robotic Studio is currently available as a Microsoft Download 

[17]. It has a limited run-time library, a simulation environment and a visual 

programming language, suitable for programming robotic behaviors that is similar to the 

Lego Mindstorms™ visual language. 

b. iRobot Aware  

iRobot Aware 2.0 is currently in Beta Test.  Microsoft does not yet sell 

robots: the focus of Robotics Studio is outward.  iRobot sell robots; Aware 2.0 focuses on 

iRobot platforms and a collection of proprietary, licensable and open libraries.  Aware 2.0 

is a tool for third-party developers to integrate payloads with iRobot platforms. Third 

party developers can license to iRobot or others.  

iRobot describes Aware 2.0 as an extensible networked collection of  

services along with a component-based architecture.  Other architectural descriptions 

include layered arbiters and publish/subscribe.  Aware 2.0 relies on the Python language 

to configure and customize applications. C++ is the component development language 

for Aware 2.0.  There appears to be a graphical component browser, but the bulk of 

application development is in Python. Aware 2.0 is amenable to prototype development 

but targets software developers.  

Aware 2.0 treats protocols as components; its applications may be Joint 

Architecture for Unmanned Systems (JAUS) compatible or compatible with any number 



26 

of other proprietary or open protocols.  The work in this effort treats Aware 2.0 

applications as legacy artifacts.  Programmers create an appropriate adaptor component to 

use Aware 2.0 applications in the rapid prototyping environment.  The Aware 2.0 

architecture does not have explicit constraints.  This means domain instance developers 

are not sharing a mutual set of constraints.  This can lead to ambiguity in production 

efforts and subsequent support. 

B. FEATURE MODELING 

Prototyping and spiral development is all about features of a system.  A spiral can 

refine capabilities or add new ones, such as an autonomous mission mode (i.e., path 

following), or a physical attribute (i.e., a manipulator arm). A spiral may also be used to 

improve a less tangible feature, such as reliability, maintainability or cost. 

In order to have smoothly progressing spirals, robotic and other system designers 

need to be cognizant of how features are related and of where new features should appear.  

At domain analysis time, analysts create a feature model [18].  It is a tool for domain 

analysis to communicate information between developers and users and, if preserved, a 

temporal tool to determine what the original developers were thinking during a previous 

spiral.  Feature models present software developers with a tool, much like an assembly 

diagram for a mechanical developer.  As Czarnecki and Eisenecker state in their chapter 

on feature modeling in their book, Generative Programming [19], “Feature Models 

provide an abstract, concise and explicit representation of the variability present in the 

software.”  One should note that the feature model, like the assembly drawing, is not a 

full representation of the system; it combines with other models for full system 

representation.  For mechanical systems, assembly drawings are associated with other 

types of drawings and models.  A part may have a detail drawing and an engineering  



27 

analysis of the strength of the materials required.  A software feature model may have 

other diagrams and analysis, such as timing constraints, state transition diagrams and 

object diagrams. 

The standard example of a feature model is a representation of a car: 

− Mandatory features: engine and transmission; 

− Optional features:  sunroof; 

− Alternate features: manual or automatic transmission; and 

− Or-Features: Electric motor, an internal combustion engine or both 

(hybrid).  

The car model above is a simple representation of the physical characteristics of a 

vehicle. In this effort, a engineers construct similar feature models  for robotic systems.  

A feature model may also consider a higher level of abstraction, the prototyping process, 

for instance.  In a robotic prototyping process, the robot feature model is a sub feature of 

the prototyping process.   

The feature model is the foundation of this research.  Formalized feature models 

can automate segments of the prototyping process.  Annotating features and translating 

models preserves information, defines data and component storage, and automates many 

segments of the process. In particular, by automating the integration of concrete 

realizations of features using components, a prototyping environment can present domain 

engineers with constrained choices that will greatly simplify the task of assembling 

software to construct prototype robotic systems.  

Examining a high-level feature model (Figure 4) based on the above four 

recurring phases of a prototyping, one finds a separation of concerns that can be used to 

advantage in defining a hardware-in-the-loop prototyping environment. 

Features are the building blocks used to describe concepts.  Features are 

configurable reusable requirements of a concept.  Each feature is associated with a  

 



28 

stakeholder or client program.  Semantic content of a feature is not directly associated 

with a feature.  Adding semantic information requires associating the feature with an 

additional model. 

 

 
Figure 4. Feature Diagram for a Prototyping Environment 

 
A feature model represents the variable and common features of a concept.  An 

important note is that feature diagrams of concepts can be graphs.  This indicates that 

sub-features may be associated with more than one parent feature. 

Feature diagrams begin with a root node known as the concept.  The parent of a 

feature is either the concept or another feature. Features are either mandatory, optional, 

alternative or or-features.  Features can only be included in a concept instance if their 

parent features are included.  Thus, mandatory features are included if their parent feature 

is included.  Optional features may be included in a concept instance or not. Only one 

feature of a set of alternative features is included in a concept instance.  One or more 

features of a set of or-features can be included in a concept instance.   

Prototype

Preparation Design Execution Analyze 

Aspects 

 
Library GUI

Error
Check Conf

Mgmt
Compiler Log Monitor

Read Compare

Translate Aspects Comm

Temporal Logs 
Serial TCP/IP Others

Optional Feature Mandatory Feature Alternative
Features Or 

Features 

Legend 

Distribute 
Code

…

 Wrappers 
 

Comm 



29 

Features diagrams are decorated with symbols to show their status in the model.  

Filled circles on the top of a feature are mandatory features; open circles are optional 

features.  Arcs drawn across the lines connecting features indicate the requirements for 

child features.  An open arc indicates a set of alternatives; a filled arc indicates a set of 

or-features.  

Tree-shaped feature diagrams can be used to discover what features may be 

common to all instances of a concept. A feature is common to all instances of a concept if 

it is a mandatory feature, and there is a chain of mandatory parent features to the concept 

root.  Similarly, tree-shaped feature diagrams provide a tool to analyze and categorize 

variability between instances of a concept to understand where the variability occurs. 

As noted earlier, not all information explicitly appears in a feature diagram.  

Additional information, such as semantic description, rationales for inclusion, 

stakeholders, priorities, etc., is included as annotations and associated diagrams. 

Implementation details may be expressed using UML class diagrams.   

The variability of the concept may suggest implementation strategies.  

Dimensions suggest compile time variability mechanisms, while extension points may 

suggest run-time variability.  

There are no adequate production tools to support feature modeling available 

today. Desirable traits of a feature-modeling tool include support for model notation, 

tools to manage additional information and hyperlinks to supporting CASE or other 

modeling tools. 

The feature modeling process is a study of variability in domain concepts. The 

process is continuous and iterative, involving identifying as many Use cases, existing 

feature models, system requirements and additional UML models as possible to identify 

potential variability points. It also involves recording all supporting information as 

features become available to the concept.  

Feature modeling is used in conjunction with decomposition techniques to create 

clean and adaptable code.  The principle of “separation of concerns” indicates that 



30 

localizing issues in our models will help us verify that our programs modules map to 

requirements.  In order to separate issues, analysts need to decompose systems:  

− Modular decomposition separates systems into units with internal cohesion and 

minimal coupling between units. 

− Aspectual decomposition separates systems into a set of perspectives that cross 

program module boundaries.  

Addressing variability is a key issue in creating reusable software.  

Decomposition decisions that address the variability discovered in feature modeling 

result in software with a high level of reusability. 

1. Feature Modeling, Discussion 

An example use of feature models might be to specify Quality of Service (QOS) 

requirements for distributed real-time systems.  A feature analysis might be a tool to elicit 

QOS requirements for a particular sub-feature of a concept.  If there is a hard QOS 

requirement, model it as an exclusive mandatory feature.  If there is room to operate in a 

degraded mode, then model QOS as two or three alternate features, i.e., QOS met, QOS 

failure or network failure. 

There exists a Backus–Naur Form (BNF) Grammar [20] for feature diagrams. 

Information frames supply supplemental information associated with the feature model 

but not explicitly represented.  This frame could then be processed with prolog or another 

logic engine to automate analysis of large feature models. Processing and analysis of 

feature models determine where requirements conflict, agree or are redundant, among 

other considerations.  The information frame could be added to the BNF Grammar and an 

automated feature-diagramming tool could be created. 

a. Advantages 

Feature models contain a great deal of information.  The top-level, visible 

feature diagram, presents an uncluttered view of the concept in all its variants.  From an 

engineering standpoint, this allows analysis of tradeoffs at variability points.  Depending 

on the type of variability, feature models highlight where the system instances are  



31 

compile time, or run-time-dependent. Additionally, feature models show where concept 

instances diverge; this may lead to areas where parallel development teams may be able 

to work without a great deal of coupling.  Conversely, feature models also illustrate areas 

where instances of a concept are common.  The prototype can reuse these areas for other 

instances of a concept or for future extensions to a concept. 

b. Disadvantages   

The main disadvantage is also the large amount of information. A feature 

model represents a multidimensional model; however, not all dimensions are explicitly 

visible.  The features themselves are one dimension, with the edges being a partial 

dimension.  That is, the edges have no explicit information assigned to them. All other 

dimensions, such as semantics, priorities, examples and rational are below the surface 

and are not completely defined.  Another disadvantage is that the size of the feature 

diagram can grow quickly.  This can result in either a diagram with a large number of 

features and unless there is a large-format printer available, detail will disappear.  

Alternately, the feature diagram might be separated into a collection of sub-diagrams.  

This might work if color or some other discriminator can be used to connect the diagrams. 

C. MODEL-DRIVEN DESIGN 

There is considerable research conducted in Model-driven Design and Model-

driven Architecture.  The Object management Group’s (OMG) Unified Modeling 

Language (UML) 2.0 provides increased support.  The Generic Modeling Environment 

from the ISIS center at Vanderbilt University provides a platform for developing Model-

driven designs and the embedded systems community has recognized the power of 

Model-driven design for developing software product lines for automotive, signal and 

aerospace applications.  The Eclipse Foundation has several projects focusing on Model-

driven paradigms. 

1. UML2.0 

The goal of Model-driven Design is to alleviate difficulties created by the low 

level of abstraction used in creating today’s software systems.   The OMG Architecture 



32 

Group has responded to this by embracing a vision to expand UML and provide support 

for all phases of the software lifecycle [21]. UML2.0 is an outcome of this vision. 

UML2.0 supports modeling from different viewpoints. Structural, interaction, 

activity, and state viewpoints have some interdependencies, but allow modelers to 

concentrate on specific concerns. 

UML is still in the development phase as a standard.  It is a large and complex, 

making it difficult to grasp in whole.  It is clear that experience “from the field” is 

required to refine and mature the standard.   

2. Chrysler AG 

Czarnecki, Bednasch, Unger and Eisenecker report on their experience at Chrysler 

AG for automotive and satellite applications [22]. They describe their experience with 

Model-driven Design and Feature Modeling tool support with the Generic Modeling 

Environment (GME) tool.   

Domain-specific concepts and features from the problem space map to a set of 

combinable elementary components in the solution space using configuration knowledge, 

such as combination restrictions, default settings, dependencies, and construction rules.  

They use a feature model to define the common and variable features of the products 

along with supplemental information (binding, priorities etc.) unique to the product under 

development. 

The feature model has a root or concept node and child nodes. The child nodes or 

sets of child nodes are mandatory, optional, alternative or or-features.  The nodes 

combine in various ways to produce an instance of a concept, (i.e., a car) which can have 

a manual, automatic or CV transmission, but only one transmission.  A car may also have 

a fossil fuel motor, and electric motor or both. 

In the referenced work, they present a UML Meta-model for feature modeling 

notation-using GME.  They also show a derived domain-specific model, also using GME. 

 



33 

3. Embedded System Control Language 

Additional work at Vanderbilt University uses the Generic Modeling 

Environment (GME) tool, along with Mathworks Simulink and Stateflow tools to create 

the Embedded Control Systems Language (ESCL) to support development of distributed 

embedded automotive application.  ESCL imports the Simulink/Stateflow models into the 

GME environment.  ESCL is a graphical modeling language suitable for use with a suite 

of sub-languages.  Sub-languages are provided to support functional modeling, 

component modeling, hardware topology modeling and deployment mapping. 

The ESCL also has a code generation component. The generated artifacts can 

synthesize the entire application behavior code, or link external application behavior code. 

4. Architecture Analysis and Design Language (AADL)  

The AADL is a Society of Automotive Engineers (SAE) aerospace standard for 

analysis and design of architectures for performance-critical systems [23].  The AADL is 

a textual and graphical language.  It is used to analyze software and hardware architecture.  

AADL addresses non-functional aspects of performance-critical systems, such as 

timing for real-time systems, partitioning safety and security.  Using AADL, system 

designers develop components and analyze the impact of the composed system.  Multiple 

alternatives are created to study trade-offs and the impact of change.   

AADL is primarily a software engineering tool.  It has International support via 

affiliation with the SAE.  The main effort described in this dissertation is complementary 

to AADL.  Where AADL addresses the big picture, the work described in this 

dissertation addresses a subset of the bigger effort.  Both efforts, AADL and this work, 

are Model-driven. Two-way metadata exchange has great potential via the Object 

Management Group (OMG) XML Metadata Interchange (XMI) specifications. The 

potential is there to generate Prototyping Meta-models from AADL models when they 

exist, feed back into those models, or form segments of emerging AADL-modeled 

systems by using XMI.   

 



34 

D. SUMMARY OF RELATED WORK 

There are a number of related areas to this work from children’s toys to SAE 

Standards.  Microsoft and iRobot are investigating tools for software developers. There is 

considerable interest in feature modeling, particularly in the automotive and aerospace 

industries as a component of model driven design strategies.  The UML is maturing with 

version 2.0 and is getting wider acceptance across a broader user base. Additional efforts 

with the GME, such as, ESCL show the utility of GME.  The Society of Automotive 

Engineers has adopted the AADL as an Aerospace Standard. 

This effort builds on and extends from many of the same roots as the above-

mentioned work. This work, however, is unique due to the application and user base.  

The above-mentioned tools have a single specific user; this effort collects and propagates 

information from an expert in software engineering to an expert in a domain to a 

technical user.  This effort will break the cycle of creating a complete set of adaptor and 

glue code needed to bring hardware/software prototypes to the test site. 

 

 

 

 

 

 

 



35 

IV. ROBOTIC SYSTEM PROTOTYPING – EXAMINING EMERGING 
HARDWARE / SOFTWARE SYSTEMS 

A. WHY PROTOTYPE? 

The section above alludes to the problems examined by robot developers. Many 

of the operations described in the previous chapter are relevant today in the current 

conflicts.  Many organizations are working to develop the artifacts, robots, 

communication systems, Operator Control Units, Mission Packages and Controls.  In 

some cases, artifacts work together because they originated at a single organization.  

However, in most cases, it is difficult to add or change functionality to a particular 

robotic system.  These instances cause great expense and long lead times to respond to 

changing requirements; a reality forced on us by an adaptive enemy.   We are in dire need 

of tools to assist us in moving solutions forward faster.  One tool that is under used is 

Rapid Prototyping.   

1. Rapid Prototyping 

Iterative development is one of the identified six best practices of software 

development [24].  The speed at which prototypes are developed affects the number of 

iterations available and the time to market.   Rapidly producing prototypes allows 

examining more concepts, finding the useful aspects and excluding suspect concepts.  

Prototypes also promote collaboration and interaction with customers prior to final 

decisions. 

Rapid prototyping processes have a wide breath, from paper and whiteboard 

sketching [25] to formal executable languages, such as the Computer Aided Prototyping 

System (CAPS) [26].  A rapid prototyping environment should be modular for easy 

modification. It should be simple and easy to use.  It should support reuse from a 

collection of modules.  The prototype must be adaptable; small changes should not 

require revisiting the implementation. The environment should contain a set of 

abstractions to describe common items encountered while prototyping, such as, data, 



36 

timing and functions. A rapid prototyping environment must also produce a trace of 

choices and decisions encountered in the prototyping process. 

There are many reasons to create a prototype: 

− One might want to investigate and gain a better understanding of the 

requirements. 

− One may need to understand a physical attribute that is too complex for 

calculation. 

− There may be compelling needs; situations require an aspect to be addressed 

quickly, while normal development progresses in parallel. 

− One may subscribe to a spiral development model, where each successive 

prototype adds additional functionality. 

− Marketing. 

In any case, a common attribute of prototypes is that they are not the complete 

and final solution, but they are an important part of system development.  Properly used, 

prototyping reduces risk, shortens time to market, and reduces life-cycle cost.  On the 

other hand, improperly used, prototyping can use up project funds and increase 

development time.  To avoid improper use, prototyping tools are needed to develop 

concepts and perform test events in parallel.  Prototype engineers capture test analysis 

and feed information back into the process to avoid rework and to highlight the successes 

and shortcomings of earlier iterations. 

2. Prototyping in DoD Acquisition 

In today’s military acquisition environment, we are moving away from so-called 

Stovepipe development.  There is more interchange between the Combat Developer, who 

articulates requirements for the soldier, and the Science and Technology Community 

whose concern is Research and Development.  In some cases, scientists develop and 

mature technology due to new requirements.  In other cases, new technologies become 

available and for demonstration to Combat Developers; programs adapt as needs change 

and as technologies mature (Figure 5). 



37 

 

 

Figure 5. A Simplified DoD View of Technology / Requirements Interactive 
Push & Pull [From Ref. [27]] 

 

The high-level acquisition process is a progression of activities moving from 

concept to delivered capability.  Figure 6 illustrates the acquisition process for the DoD, 

Joint Ground Robotics Enterprise [27].  Within the phases of this program are a myriad of 

sub-programs, as well as a complex mix of stakeholders.  Requirements, the far left side 

of Figure 6, initiate in a variety of ways.  Users may generate them, and they often do, 

but they may also come from new capabilities demonstrated by the science and 

technology community. Requirements may also be political; Congress has the power to 

declare that DoD pursue certain technologies. For instance, Congress has mandated that 

unmanned vehicles will compromise one third of Ground Combat Vehicle fleet by 2015 

[28] . 

 



38 

 

Figure 6. The DoD Joint Ground Robotics Enterprise operates within the DoD 
Acquisition Process [From Ref. [27]] 

 

Successful robotic programs are mutable and responsive to rapidly changing 

technology. Prototypes are extremely useful to help bridge the gaps between 

requirements and technological limitations.  All stakeholders need to understand the 

limitations and/or the possibly unexploited reach of technology.  All stakeholders also 

need to understand the proposed solution in terms of requirements.  Since there are many 

things researchers and end users need to understand, creating prototypes for development 

and operational tests that help them to understand the relationship between solutions and 

requirements is crucial. 

Once a requirement is validated and accepted, DoD researchers and engineers 

begin to mature and develop designs.  As they move up in Technology Readiness Levels 

(TRL), they begin to have prototypes that look more and more like useful objects.  

Particularly when working with complex systems, such as robotics, researchers may span 

several technology requirements, as well as several technology generations.  A designer 

may use a mature technological mobility platform with a very immature, but promising, 

sensor technology.  The prototype must be developed, presented and documented such 

that all stakeholders are aware of the aspect that developers are trying to understand; in 



39 

the example case, the immature sensor.  If not all stakeholders are aware of the purpose 

of the prototype, misunderstandings may hamper progress, (i.e., the sensor is on an 

operational robot, the sensor must be ready for the field, or, if the prototype system 

performs less than stellar, there must be something wrong with the mobility platform). 

At various stages in the process, designers and researchers form an 

implementation team to create a prototype.  This team may be part of the design team, or 

it may be an outside entity contracted for creating a prototype.  Depending on the 

maturity of the technology and the phase of development, the prototype can range from 

simulation to full working models.   

Remember, the purpose of creating a prototype is to gain an understanding 

through tests. If an implementation team creates an artifact that meets the need of the 

original idea, researchers can test it.  Researchers conduct simple tests within the confines 

of the project lab.  A dedicated test group often runs tests that are more complex.  In this 

idealized set of scenarios, engineers and researchers capture ideas, make them real and 

then compare them back to the need.   

B. PHASES OF A PROTOTYPE 

An ideal prototype development proceeds as shown in Figure 7. 

 



40 

 
Figure 7. An Idealized Prototyping Process Contains Inputs, Processes and 

Storage Elements as Well as Feedback 

 

1. Inception 

This is the initiation of the project.  End users and developers formulate needs and 

researchers conceive ideas of how to fulfill these needs, although the needs and ideas 

may come from a variety of sources.  Technology developers may discover an application 

for an emerging technology or a new application for an existing technology.  Users may 

articulate a need for their current operations.  Managers may conceive a new or improved 

way of accomplishing their mission. 

 

 
R & D 

 
Managers 

 
Users 

 
Inception 

 
New 

Artifacts

 
Existing 
Artifacts 

 
Support 

Elements

 
Preparation 

 
Design 

 
 

Execution 

 
Analysis 

 
Run-time 
Monitor 

 
Data 

Storage 

Design, 
Artifact, 
Support 
Element 
Storage 



41 

2. Preparation 

The preparation phase initiates the process of creating a prototype. Prototype 

engineers collect items of interest heretofore known as artifacts. Rather than create the 

entire prototype by hand, engineers create the interfaces to the artifacts of interest and 

additional aspects needed to execute a prototype, most commonly instrumentation and 

communications. These small packages, possibly components in their own right, are 

stored for future use.  The minimum set includes the code to translate the interface of the 

component of interest into a standard representation, and an interface to the world, 

usually a network interface.  Along with the code, developers specify a set of documents 

specifying compilers, installation instructions and instructions on how to start the 

component if necessary. 

3. Design 

In the setup or assembly phase, the prototype is built from the elements created or 

installed in the preparation phase.  Ideally, this is accomplished using a graphical user 

interface (GUI) to connect the components. The components cannot communicate 

directly, so each component is associated with a wrapper, customized during the 

assembly phase.  After a graphical model is created, parameterized and error-checked, 

designers create a set of wrapper programs.  The wrapper programs should have attached 

documentation needed for their deployment. The assembled prototype should be stored 

for future reference and configuration management. 

4. Test  

When the technicians operate the prototype, researchers capture and store various 

aspects of the system for future analysis.  There is also the possibility at this point for 

them to monitor the run-time instrumentation in real time.  By doing so, researchers can 

display various conditions to the test team as the prototype execution continues.  The test 

team can monitor real-time constraints described in the instrumentation and gain an 

indication of how closely the system is operating in regards to timing bounds.  They can 

also monitor network traffic and display the capacity of a particular link as a color change 



42 

on the graph’s edge.   If test conditions exceed predefined bounds, or indicate a safety 

problem, the test team has the option to abort the test. 

5. Analysis   

Data collected during run-time is retrieved with the assembled prototype for 

analysis.  In a spiral development effort, the results of the analysis feed back to the 

“Initiation Phase” as part of the next cycle. 

C. CASE STUDY – AD HOC SPIRAL DEVELOPMENT OF THE OMNI-
DIRECTIONAL INSPECTION SYSTEM (ODIS) ROBOT PROTOTYPE 

1. Introduction 

The following case study describes efforts to apply spiral development to a 

prototype robotic system.  It details our efforts to respond quickly to rapidly changing 

requirements by preparing a series of functional electro-mechanical systems intended to 

leverage current R&D efforts and present a tool to management and user communities.  It 

also documents where the shortfalls in current methodology are.  In particular, US Army 

Tank Automotive Research, Development and Engineering Center (TARDEC) engineers 

needed to create an under-vehicle inspection system, which would be more effective than 

the existing manual inspection.  In general, they needed to begin to develop methodology 

to improve their development process.  

The case study will discuss TARDEC efforts with the ODIS robot in terms of the 

idealized prototyping process.  As you will see, the high points of this case study are user 

interaction and feedback.  The areas that need improvement are information transfer, 

particularly when the team is in flux.  

2. Inception  

As mentioned above, the ODIS Robot project began as a University Research 

Project. In the late 90’s, The US Army Tank Automotive Research, Development and 

Engineering Center contracted with Utah State University to conduct research into small 

Omni-Directional Vehicles drives as part of its continuing research into novel mobility 

concepts.  Three six-wheel electric vehicles were produced (ODV-T1 to ODV-T3) of 



43 

varying sizes from 40 to 1500 pounds to demonstrate scalability.  A four-wheel hybrid 

hydraulic version was also produced (ODV-T4).  Figure 8 is a picture of a collection of 

Omni-Directional vehicles at Utah State University. 

 
Figure 8. Shown are selected Utah State University Omni-Directional Vehicles 

Developed under TARDEC’s Intelligent Mobility Program 
 

The three-sub tasks of this research included control of multiple intelligent wheels 

for Omni-Directional Drive, autonomous path planning for Omni-Directional Vehicles, 

and autonomous path execution.  The fourth vehicle produced was the original ODIS 

robot, ODIS-A (A for autonomous). The ODIS-A experiment converged the three lines of 

research into a practical application, under-vehicle inspection.  Investigators chose under-

vehicle inspection, not because there was a great need for this type of robot at the time, 

but because it was an interesting, constrained problem.  Under-vehicle inspection was a 

task that addressable and capable of field demonstration  without expensive field-testing. 

ODIS-A was completed in the spring of 2001.   

As mentioned above, TARDEC’s main purpose in this research was to explore 

mobility concepts for small ground robotic vehicles.  Due to their small footprint, many 

known mobility metrics for heavier vehicles do not apply.  The desire for autonomy in 

small robots, as well as large robots was also a given. This robot was demonstrated at a 



44 

Workshop on Future Unmanned Vehicles at Ft. Leonard Wood, MO on September 5, 

2001.  Representatives from the Army’s Military Police, Engineering and Chemical 

Schools and Combat Developer’s offices attended.  

An interesting aside: while the robot impressed those in attendance, many missed 

the point.  Many commented that the technology was cool, but how often do we inspect 

under-vehicles? Although this appeared to be a prototype “under-vehicle inspection” 

robot, it was in reality, a prototype for a unique ability, autonomous operation, on a 

unique mobility platform. 

Seven days later, immediately after the events of 9/11, under-vehicle inspection 

became a priority.   Somewhat serendipitously, researchers immediately realized they had 

a prototype that would fill a need.    

 
 

Figure 9. Project History from 2000 to 2006, ODIS Spiral Development 
Timeline 

 

Figure 9 shows the timeline for ODIS prototype progression, and makes clear 

that the time span between prototypes is growing at an unacceptable rate, as is the 

funding expenditure.  The ODIS development is not an isolated case.  Additional case 

studies, similar to ODIS can be described for other ground robots and mission packages.  

2001 2002 2003 2004 2005 2006

ODIS -A Spiral 0 

ODIS -T1 Spiral 1

ODIS-T2 Spiral 2

ODIS-T3 Spiral 3

Prototype 

Test/Event 
Emerging
Requirement

Design 
Test

Analysis 



45 

Funding issues contribute, but mostly due to rightful skepticism that this is not a simple 

task or that some proposed solutions are not fully fleshed-out.  Researchers need tools to 

help them quickly develop lab prototypes of existing systems with new mission packages 

that mitigate risk.  Once risk is understood and documented, decision-makers will provide 

funding for promising solutions. 

3. Spiral 0 

a. Preparation / Design - Spiral 0 

Preparation was simple.  The ODIS-A existed and could be evaluated by 

users almost immediately.  The preparation consisted mainly of documenting the existing 

robot and submitting proposals to various emerging disaster agencies.  Design was also 

almost trivial at this point.  TARDEC researchers and designers knew, though, that this 

robot was a laboratory device, and further design would be necessary.  From the onset of 

this effort, they decided that they would use a spiral development model.  That would 

give them the best opportunity to leverage existing research funds against this need. 

b. Test - Spiral 0 

For the initial test, the ODIS-A was brought to the Detroit Arsenal and 

demonstrated to the Civilian Guards and Force Protection Team.  Operations were filmed 

and documented for future use in briefings to DoD and Homeland Defense Managers.  

The goals of this brief test were to: 

− Better understand requirements and decide on a path forward. 

− Marketing (even Military R&D organizations need to compete for funding). 

c. Analysis – Spiral 0 

The purpose of this limited test was to help make a decision to go forward 

with the ODIS project.  There were a number of attributes of ODIS-A that  the analysis 

team  expected the users and managers to criticize and they did.  Both the robot and 

Operator Control Unit were LINUX-based, with cumbersome and time-consuming boot 

procedures.  ODIS-A was a laboratory robot, so it was not water resistant, and not very 



46 

rugged.  Battery life was also an issue.  The analysis team had to be careful to explain 

these limitations to prevent early dismissal of the concept. 

The surprising part was that the guards did not want to operate it, except 

for short trial runs.  They articulated they were afraid to break it.  The other surprise was 

they wanted nothing to do with autonomous operation.  They preferred when someone 

was tele-operating the robot; they said it gave a better inspection and they liked having 

the control. 

4. Spiral 1 

a. Design – Spiral 1 

The positive feedback the team received from their original investigation 

led to an almost immediate effort to begin an iteration of the ODIS robot, designated 

ODIS-T1, that addressed new requirements and needs, as well as a better understanding 

of the original requirements.  In particular, the next spiral was to reduce complexity, 

improve reliability, drive cost down and increase user acceptance.   

TARDEC was fortunate to have a modifiable open contract with Utah 

State University.  Thus, they retained the majority of the key developers from the ODIS-

A project.  This greatly simplified their ability to create three ODIS-T1 robots rapidly. 

Because of the original tests, researchers defined some key elements.  

Microcontroller operating systems replaced the LINUX operating systems, reducing boot 

time from minutes to seconds. Eliminating autonomous functions removing costly 

sensors.  This also improved reliability, since the autonomous functions were still not 

fully defined and the question lingered as to how well the autonomous functions would 

work in the real world.  The OCU was redesigned into a self-contained unit with an 

integrated video monitor.  The camera was redesigned to make it water resistant. 

The team reused much of the original low-level control software for the 

wheel nodes from the ODIS-A spiral.  The team maintained the approximate profile of 

the physical design, including the wheel positions, and designed a new battery that would 



47 

allow for almost instantaneous battery replacement. An engineer from the Army Lab was 

assigned to work in Logan, Utah with the Utah State Design team for six months. 

b. Test – Spiral 1 

Three ODIS-T1 robots were hand-built at the Center for Self-Organizing 

Intelligent Systems at Utah State University.  The first was delivered on March 1, 2002 

and unveiled at the Society of Automotive Engineers World Congress in Detroit, MI that 

week.  The reason for unveiling at this Exposition was primarily marketing.  Many high-

level Army officers attend this conference, as well as high-level Army civilian managers.  

Following the March event, the team continued marketing and producing 

an awareness of this robotic capability by showing it at a number of Military and Security 

technical conferences.  ODIS-T1 was also used intermittently at the TACOM main gate. 

In August of 2002, researchers conducted a Limited Objective Experiment 

at Fort Leonard Wood, MO.  This test was designed to exercise the ODIS-T1 robot in a 

controlled environment with real-world users.  The test coordinators selected ODIS-T1 

robot operators from National Guard Military Police activated for Force Protection at 

Fort Leonard Wood and by civilian gate guards from Fort Leonard Wood.  The test 

scenarios evaluated the robot inspection against the proverbial “Mirror-on-a-stick.”  Tests 

were conducted during the day and night, in August sun and in Thunderstorms.  Test 

scenarios for ODIS included Ad-Hoc Checkpoints (operators outside using the portable 

OCU) and fixed checkpoints (operators in a climate-controlled environment with the 

video piped to a 19” television).  Many of the vehicles inspected were rigged with 

simulated small explosive devices. 

In July of 2003, the team also conducted a demonstration/experiment at 

the Ports of Los Angeles and Long Beach (POLA/POLB) in cooperation with the 

California Highway Patrol, Coast Guard, Port Security, TSA and California State 

University.  The goals of this experiment were to use the prototypes to discover new 

requirements and to assess training requirements as well as assess inspection time.  The 

primary operators were California State University students with no previous robotics 

experience and no previous under-vehicle inspection experience. This experiment placed 



48 

no simulated hazards.  The students were asked to point out suspicious items and were 

supervised by TARDEC Engineers and California Highway Patrol Officers. 

c. Analysis – Spiral 1 

The purposes of the evaluations and experiments the team conducted were 

to improve the ODIS robot by soliciting feedback from the users.  Most users were very 

excited about ODIS.  It was a tool to keep them out of harms way while allowing them to 

do their job even better.  During the tests at Ft. Leonard Wood, ODIS performed better 

than the mirror on a stick in all categories.  At night in the rain, it was markedly better.   

ODIS used from a climate controlled guard shack performed better than ODIS used 

outside with the OCU hung from the inspector by straps.  Sun glare on the video screen 

was an issue outside. 

ODIS-T1 originally only supported a visual sensor.  With minor 

modification, engineers added a thermal imager in parallel to the visual camera.  The 

thermal imager selection was a switch on the OCU.  Testers did not use the thermal 

imager at Ft. Leonard Wood; the soldiers’ mission did not rank it as a very desirable item.  

At the POLA/POLB event, the California Highway Patrol (CHP) officers were very 

impressed by the thermal imaging.  The CHP primary mission is truck safety; they saw 

the thermal imager as a great tool to allow them to inspect truck brakes for proper 

operation. Homeland Defense officials were also interested in the thermal imager as a 

tool to quickly detect false tail pipes and to assess the time a vehicle had been parked by 

looking at heated elements under the vehicle. 

Potential end users also requested other sensors.  A radiation detector was 

evaluated by placing a standard Total Level Detector (TLD) on an ODIS robot.  The TLD 

was set to beep at three times the background radiation level.  Soldiers were able to find a 

Cesium source hidden in a vehicle 100% of the time with this simple sensor.  Users also 

asked for an explosives detector; however, at the time of these experiments, there were no 

compact non-contact sensors available. 

Mid-level management brought up the issue of power.  The team learned 

that there was a strong desire not to put a new battery and a new charging system in the 



49 

field.  During the POLA/POLB experiment, researchers also had the CHP evaluate a new 

portable OCU built into a vest.  The officers were very adamant that this was the way to 

go, since the majority of their operations are at Ad-Hoc Checkpoints.  They also made 

some suggestions that greatly improved vest OCU ergonomics.  

5. Spiral 2  

Spiral 2 began in June of 2003 at a Joint Robotics Program meeting.  The research 

team briefed the status of ODIS-T1 to the group.  Also during this time, the Iraq war was 

under way and the most dangerous job soldiers had in Iraq (according to the news 

reports) was vehicle inspection at Traffic Control Points (TCP); two soldiers lost their 

lives to snipers at the manned TCPs that week.  The Rapid Equipping Force asked 

TARDEC researchers if they would like to participate in a field experiment and send 

several ODIS robots to Iraq and Afghanistan. 

a. Design – Spiral 2 

Design for Spiral 2 consisted primarily of incorporating lessons learned 

from Spiral 1 into the new prototype, as well as making it more robust and survivable.  At 

this time, Utah State University sub-contracted with Kuchera Defense Systems (KDS) in 

Winbur, Pennsylvania, for mechanical fabrication and assembly.  In particular, the clunky 

ODIS-T1 OCU box was replaced with a vest-mounted OCU, the hand-fabricated sheet 

metal body was replaced with a hull machined from billet aluminum, and standard 

military batteries replaced the hand-built robot batteries.   

Even with these clear requirements, the first article was delivered in 

August with a camcorder battery for the OCU and a head mounted display.  The team 

knew from experience with other programs that head mounted displays may have 

important uses, but not for this application.  The head mounted display makes it difficult, 

if not impossible to share information that is projected on the display.  It is also unwieldy 

for individuals wearing glasses and helmets.   An OCU rework task was initiated with 

very specific guidance. 



50 

There was very little software rework, other than porting the master node 

software from an Onset TT8 microcontroller to a Phytec MPC555 Microcontroller.  The 

MPC555 was substituted to allow additional functions as time went on.  Although the 

ODIS-T2 was to be assembled at the KDS facility, many of the original developers were 

still available at Utah State University, and much of the original work was done by the 

developers at Utah State University   The contract with USU was winding down, and 

Kuchera Defense licensed the ODIS technology rights from Utah State University.  With 

several USU employees temporarily working now for Kuchera Defense, Kuchera 

Defense delivered the first 10 ODIS robots in January 2004.  

b. Test - Spiral 2 

A first limited test for the spiral 2, ODIS-T2, robots was the so-called 

“Beltway Sniper Trial.”  Lee Malvo’s trial was held in a courthouse with an underground 

parking structure. The Chesapeake, VA police wanted no surprises. They asked to use an 

ODIS robot to conduct their under-vehicle inspections.  The ODIS-T2 robots performed 

as expected and the test generated no new requirements.   

The next ODIS-T2 robots were completed for a limited fielding to soldiers 

on the ground in Iraq, Afghanistan and other CENTCOM elements.  Ten robots were 

taken to Iraq and Afghanistan in February 2004.  There are now additional ODIS-T2 

robots in theater.   

The CENTCOM testing generated several new requirements.  

Maintenance of the robots became an issue.  The team had not made user maintenance or 

configuration available.  ODIS-T2 has very low ground clearance; it could not be used to 

inspect trucks parked off road.  A requirement for a mast to raise the camera so that it 

could look inside the vehicle cab and trunk will allow all soldiers to stay clear of the 

vehicle until they have a first look from standoff.  Researchers had developed a small 

TNT detector to the point where it could be used on a robot. 

The experiment continues to this day, with additional requests for ODIS 

robots, particularly with the camera mast, regularly coming from soldiers in the field. 



51 

c. Analysis – Spiral 2 

None of the new requirements could be completely satisfied with the 

ODIS-T2 robot. The maintenance issue and higher ground clearance were interrelated.  

Researchers recognized that redesign of the physical robot was necessary, to produce 

modular wheel nodes to allow ease of maintenance and mission-specific wheel sets. They 

initiated work on a “camera mast” mission package that would raise the camera from 4” 

to as much as 12’; but the team could not access any control lines to maneuver the mast. 

The FIDO TNT detector also required remote control and data return; however, the 

software was again not up to the task without major work.  

The team ported the software from the ODIS-T1 prototype to the new ODIS-T2 

prototype using a seat-of-the-pants effort.  Very little documentation remains.  The 

development environment was an expensive package, but since the majority of the work 

was done at Utah State University, they used a student version.  In addition, custom 

libraries and in-line assembler codes were issues.  The contract with Utah State 

University expired and their expertise was no longer available.  TARDEC researchers did 

not have an open contract with Kuchera Defense Systems that they could draw on. With 

an extensive in-house effort, the team reverse-engineered the ODIS-T2 serial command 

packets, but neither the robot nor the OCU had available hardware lines to utilize.  Both 

the ODIS-T2 robot and OCU became black boxes.     

6. Spiral 3 

Spiral 3 was initiated by establishing a contract with Kuchera Defense Systems to 

create yet another more robust system that could address requirements discovered in 

Spiral 2, as well as to add flexibility and standard messaging to address yet unknown 

requirements. 

a. Design - Spiral 3 

The ODIS-T3 was to be another prototype that would be used in 

contingency operations. ODIS-T3 was not necessarily a full-production version, but one 

that would shake out final issues and lead to a production version. 



52 

Requirements for the spiral 3, ODIS-T3 design included: 

− Design for manufacturability. 

− Design for maintainability. 

− Compliance with the Joint Architecture for Unmanned Systems (JAUS)  

standard. 

− Robust interfaces. 

− Modular wheel nodes with low and high clearance versions. 

− Support for arms and masts. 

The design team had some members that worked with the former Utah 

State University Team, but the USU team was completely gone from the contractor’s 

facility by the time ODIS-T3 design officially started. Two of the requirements,  design 

for manufacturability and design for maintainability, entailed a complete re-design of the 

wheel nodes  Redesign of the wheel nodes forced researchers to do a complete rewrite of 

the low-level wheel node control software.  In addition, JAUS-compatibility requirements 

forced them to redesign the top-level control software. 

Due to the lack of acceptable prototyping software, and the lack of 

intermediate information documents from the early part of the program,  the contractor 

design team attempted to develop the software in an ad-hoc method; this lead to a failure 

to produce an acceptable design and schedule slip. 

D. SUMMARY AND DISCUSSION 

The above case study should make it clear how important prototype systems are 

in quickly developing tools that improve as time goes on and have the ability to save lives 

now.  When the ODIS-T2 robots were first considered for experimental deployment in 

current conflicts, there were a handful of Unmanned Ground Vehicles in theater. Most 

were tele-operated mine-clearing vehicles and some scout robots for cave exploration. By 

the time the first ODIS-T2 robots were delivered six months later, there were about 200 

small robots in theater, most being delivered to Explosive Ordinance Disposal (EOD) 

teams to defeat Improvised Explosive Devices in Iraq.  Users were still skeptical.  At this 

writing, there are about 2000 small robots in theater, again most delivered to EOD teams, 



53 

who, today, consider them a necessary tool.  Every day, acceptance levels increase, but 

with that acceptance comes a price.  As Unmanned Ground Vehicles penetrate operations, 

soldiers in the field come to depend on them.  If they fail, the soldier on the ground 

cannot perform his or her job effectively, at least if they are not willing to face the risk 

from reverting to non-robotic Tactics, Techniques and Procedures (TTP).    

This puts the onus back on developers.  Army research and development 

organizations are looked to develop new tools and capabilities for existing and emerging 

platforms quickly.  The developers need to assemble concept vehicles or existing vehicles 

with emerging concept mission packages, rapidly test and demonstrate them in a benign 

environment and then harden the vehicles and mission packages for actual use.  All this 

must occur in a period measured in months not years. 

As noted above, spiral development has great potential to bring partial solutions 

to the field quickly.  The initial ODIS spiral development was heavily driven by hardware.  

Hardware designers have at their disposal a wealth of tools and techniques to move them 

forward quickly.  CAD systems let them see high-level views of the configuration well 

before they cut metal.  CAM and rapid prototyping systems, such as new 3-D printers, 

allow them to refine fit and rapidly change some of the parts built. 

Software developers, on the other hand, do not yet have the wealth of tools that 

hardware designers enjoy.  Software prototyping tools remain in the domain of high-end 

software houses, mainly due to their cost, complexity and lack of acceptance.  Software 

prototyping tools are needed to address modeling and transfer of the models to executable 

code that can be used in conjunction with hardware prototyping tools.  Today’s electro-

mechanical systems, such as robotic systems and unattended sensors are highly 

dependent on software.  Designers, developers and testers need tools to allow them to 

rapidly configure new systems, or modify current systems. 

A goal of this effort is to produce a working model for such efforts.  TARDEC 

researchers want to investigate the potential for a set of tools that will allow rapid 

development of robotic systems, much like CAD tools allow mechanical designers to 



54 

pass their models to machinists that produce the hardware without having the machinists 

develop a full understanding of the engineering involved in the design. 



55 

V. PROTOTYPING ENVIRONMENT REQUIREMENTS 

A. INTRODUCTION 

To make the prototyping process efficient, tools and guidelines are necessary.  In 

most cases, the artifacts researchers begin with are black boxes, a combination of 

Commercial-off-the-Shelf (COTS) hardware and software.  Hardware items may include 

mobility platforms, Operator Control Units, sensor packages and controls.  Time and 

money are of the essence, as researchers and engineers cannot always afford to go back to 

the original developer, and usually do not have the time to contract to do so when they 

can afford it.  Thus, they need an approach that will allow them to use these black boxes, 

as well as simulations of the black boxes, in a hardware-in-the-loop environment. 

Researchers and engineers need to be able to create these prototypes in government labs, 

or using third-party support contracts.  Auxiliary hardware can be placed at the interfaces 

to the black boxes to translate known inputs and outputs into messages understandable to 

the prototyping environment.  

This research propose a model-driven approach, applied very early in the process, 

to gain an understanding of requirements, sort out the promising solutions from the snake 

oil and demonstrate outcomes to senior managers.  A model-driven approach is desirable, 

since models facilitate generated software and automate additional aspects of 

development such as testing, and debugging. 

1. Preparation  

The preparation phase is where researchers work with their software experts to 

create well-formed, well-documented components necessary for assembly of software to 

integrate artifacts.  Each artifact, which might be a mobility platform, Operator control 

Unit, sensor package, or control, is considered a black box, and researchers expect to 

have no knowledge of the internal software or structure of the artifact.  All that is 

available is some interface.  It may have documentation, or it may have to be reverse-

engineered.  



56 

Researchers and engineers also know that they want the artifacts to communicate.  

The original communications may be unsuitable for the current task, however, or the 

engineers might be experimenting with new communications strategies.  

Lastly, researchers want to understand or control aspects of the messages in a data 

flow. They might want to count messages of a certain type, modify messages to insert 

faults or throttle the data flow. 

Software experts create the interfaces and components necessary for wrapping the 

black box as components.  This includes parsing messages originating from the network 

or destined for the network and translating the data structures to the legacy format 

understandable to the artifact. They complete the instrumentation and other optional 

aspects.  

They create communication component sets, be they for simple TCP/IP or 

complex mesh networks.  The completed set of components from the wrapped black box 

to the output of the communication component forms a node, or functional element of the 

prototype, capable of sending messages, receiving messages or both (Figure 10). 

 

Figure 10. Prototyping Environment Node Components Block Diagram Showing 
the Relationship between the Network, Wrapper Components and a Legacy Artifact 

 

Legacy 
Communication 

Internal 
Communication Communications 

Component 

Adaptor 
Components 

Artifact 

Optional 
Components 
 

Network 

Wrapper 



57 

a. Artifact Wrappers 

Creating a wrapper is usually not a trivial task.  In many cases, TARDEC 

robotics designers and researchers are faced with a robot or sensor that can only be 

accessed via a serial radio link.  The serial link may communicate with proprietary 

software applications and they want to access it to create an input into a new control 

algorithm or integrate it into an existing display. If they are lucky, they have source code 

available.  Often they do not; logic analyzers must be set up to capture and decode the bit 

stream. Creating an interface to a module with only a serial output may take several 

weeks of effort, and may include creating wiring harnesses as well as code.  

The engineer charged with this task must first sort through the code and 

documentation (if available) to discover the format of the serial packets.  An example is 

the ODIS robot.  It communicates with its Operator Control Unit (OCU) via a serial port 

connected to a radio modem.  Source code was available, but not completely up to date.  

The engineers tasked with communication with the robot via a laptop computer spent 

considerable time and effort to decode and document the command packets.  They 

documented the packet structure using an Excel spreadsheet.  (Figure 11).  The 

spreadsheet has no external documentation; it sits as a stand-alone file in a project 

directory on a server, but only because a researcher put it there; it formerly resided on 

one of the engineers’ workstation.  It is understandable, only because that researcher can 

walk up to the engineer that created it and ask him about it.  Is this poor software 

engineering practice? Absolutely. Nevertheless, it is common practice in prototyping 

environments. Neither of the engineers working on this project were software engineers; 

one was an electronics engineer and the other a computer hardware engineer.  The team 

has no dedicated software engineer on staff. 



58 

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

230 231 232 233 234 235 236 237 238 239

pad (int8) size (int16)

type (int16) timems (int16)

command (OT2Command)
mode (int16) ESTOP (int16)

command (OT2Command)
xdot (float32)

command (OT2Command)
ydot (float32)

command (OT2Command)
yawdot_rad (float32)

end (int8)

command (OT2Command)
offset_x (float32)

command (OT2Command)
offset_y (float32)

 
Figure 11.      ODIS Serial Command Packet, Binary Field Description 

 

Field # Name Type Units Interpretation 

1 Presence Vector Unsigned Short N/A See mapping table that 
follows. 

2 Propulsive Linear 
Effort X 

3 Propulsive Linear 
Effort Y 

4 Propulsive Linear 
Effort Z 

5 Propulsive Rotational 
Effort X 

6 Propulsive Rotational 
Effort Y 

7 Propulsive Rotational 
Effort Z 

Short Integer Percent 
Scaled Integer 

Lower Limit = -100 
Upper Limit = 100 

8 Resistive Linear 
Effort X 

9 Resistive Linear 
Effort Y 

10 Resistive Linear 
Effort Z 

11 Resistive Rotational 
Effort X 

12 Resistive Rotational 
Effort Y 

13 Resistive Rotational 
Effort Z 

Byte Percent 
Scaled Integer 

Lower Limit = 0 
Upper Limit = 100 

  
Figure 12. JAUS Message 405h Set Wrench Effort (specification)  

 

Once the serial packet formats are understood, then a message that 

matches the packet data must be chosen.  For the case of this effort, an ODIS command 

packet example, a JAUS wrench command was chosen (Figure 12).  The second of the 



59 

two engineers led work on this side of the effort.  The resulting work resided on the 

second engineer’s workstation.  The result was the same as above.  Although the results 

were acceptable within the parameters of the assignment, the work left much to be 

desired from a software reuse standpoint.  The ultimate result of this effort should have 

been a reusable artifact wrapper; instead, the researchers had isolated code that was used 

as a temporary measure to experiment with a single aspect of the prototype development. 

Obviously, no one wants to loose this work, but it often happens.  This 

research provides support in the preparation phase for wrapper creation, as well as 

documentation.  Guidelines, probably in the form of design patterns are necessary to 

reduce wrapper construction effort as well as increase understandability for those using 

the wrapped artifact in design.  Additional support is necessary to collect and make 

available descriptions of the artifact capabilities, documentation about the team that 

created the wrapper, any physical wiring diagrams necessary to connect the artifact to any 

necessary auxiliary hardware, revision history, etc. 

To provide universal reuse, another part of the puzzle is to associate a set 

of XML data structures to describe messages between artifacts, where the artifacts are 

recognized as black boxes. That is, researchers do not know, or pretend that they do not 

know anything about the internal workings of the artifact. In the previous example, the 

data structure translation was ad hoc. To add instrumentation or change communications 

strategy requires significant rework; rework that must be done every time they want to 

use any part of the wrapper for a new prototype. 

XML data structures are very important to allow automation of component 

configuration in the design phase of the prototype environment, as well as forming 

machine-readable messages for execution and analysis phases. Ideally under these 

conditions, a set of XML data structures will be associated with each translator 

component, one for each of the message types supported, and data generated during the 

translation will be passed through the wrapper in XML format.  The latest version of 

JAUS will be defined in XML format; proper use of XML will allow the prototyping 

environment to keep pace with the changeable nature of standards.  As the standards 

mature, different versions of the message set can be applied.  Design time configuration 



60 

of components can be automated with dependency on XML message sets.  This allows 

for component software reuse as the standard evolves.  The environment could even be 

used with other message sets, as long as they are defined in XML. 

b. Communications Components 

In addition to the wrapper, a communication component must also be 

created to interface the node to the prototyping environment.  Of course, multiple 

components are necessary, even in a homogeneous communication since the data flow is 

directional; one each (translation and communication) component for read and write.  

The prototyping environment must support insertion of alternative communications 

strategies.  In some cases, the prototype nodes will communicate using standard TCP/IP, 

but there also could be communications via wired busses, mesh networks or even 

combinations. 

c. Optional Components 

Other components are necessary to make the prototype useful as a test 

subject. These components include logging and/or and monitor instrumentation, temporal 

logic, data throttle, fault insertion, security and encryption or other aspects are just a few 

that are necessary and useful for prototype evaluation. Programming elements, such as 

counters, loops and conditional gates are also necessary. Once again, design patterns are 

necessary to reduce component construction effort as well as increase understandability 

for those using the aspect in their design.  Again, additional support is necessary to 

collect and make available descriptions of the aspect capabilities, documentation about 

the team that created the wrapper, and application examples. 

2. Design Phase   

a. Top Level Design 

In the design phase, the prototyping environment is turned over to a 

domain expert to construct a prototype system of interest.  The engineer runs a Graphical 

User Interface (GUI) to create a dataflow model of a distributed system (Figure 13).  



61 

Each node represents a separate computing element.   When a node is opened, the screen 

changes and a node-programming environment is displayed. 

 
Figure 13. Prototyping Environment, Conceptual Model for the Graphical User 

Interface  

 

b. Node Level Design 

Like the main programming environment, the node programming screen 

will have components in one window and a work area to the another  In addition a list of 

allowed messages are displayed. If a message is checked, the environment will read the 

XML file for the message and display the data items in the checked messages.  These will 

be used with context-sensitive menus to configure components that are capable of making 

decisions based on message parameters.   

V e c to r  D r iv e r

T e le o p e ra te d
D r iv e r

R o b o t

V e h ic le
c o m m a n d e r

T ra in e rIn p u t  C o m m

U p d a te  C o m m

U p d a te d  N N

N N  U p d a te
D e s t in a t io n

N o d e s

U p d a te d
N N

T ra in in g
D a ta

S e n s o r  D a ta

S e n s o r  D a ta

S p e e d /S te e r

A c tu a to r  S ig n a ls

S p e e d /S te e r

S p e e d /S te e r
T ra in g  D a ta  N o d e

O rd e rs

S ta b il i ty

H u m a n
In te rv e n t io n

S ig n a lH u m a n

S q u a d
C o m m a n d e r

S e n s o r  A rra y

H u m a n  S u p e r v is o r y  P e r c e p t io n ,  N e u r a l  N e t  U p d a te  D a ta f lo w

V e c to r  D r iv e r

R o b o t

V e h ic le
c o m m a n d e r

T ra in e r

In p u t  C o m m

S e n s o r  A r ra y

 



62 

Message3

Translator Communicator

Delay

Delete

If

Log

Message1
Message 2

 

Figure 14. Node Programmer, Initial Condition 

 

Translator

Communicator

Delay

Delete

If

Log

Delay

Delete

If

Log

Log

Message3

Message1
Message 2

 

Figure 15. Node Programmer, Final Condition 

 

The node-programming screen should start up with artifact wrapper and 

communicator component (Figure 14).   The user can accept this as it is, and complete 

any communicator setup, or the user can add additional aspects to the node (Figure 15).  

Since researchers may be dealing with real-time systems or limited speed processors, 

timing is a concern.   As they add additional aspect components, they slow down the 

system.  Researchers have to live with some overhead, and some of the overhead may be 

made up for by using faster communications than they expect in the completed system.  

In other cases, they may have to limit the aspects they install in the nodes and possibly 

create two instances of a prototype with different aspects in each. 



63 

Additional standard utilities are necessary such as storing the prototype at 

any time, retrieving a previous prototype, notes and cut/paste. 

At this point, everything needed is in place to generate wrappers and glue 

code for each node.   

c. Code Generation 

Given a model-based approach, there is, in the background, a Meta-model 

that is amenable to code generation and composition.  At a minimum, code for each node, 

along with compilation and deployment instructions should be generated.  A desirable 

element would be to pipe the generated code into appropriate cross-compilers and create 

executable codes.  A final (and not far-fetched) item would be support to distribute the 

finished product to the appropriate execution elements. 

3. Test 

At the conclusion of the design phase, all the elements of the prototype are 

created and a final executable distributed system is available, along with instructions on 

how to operate it (turn on individual nodes, dependencies, etc.).  Now researchers can put 

the prototype through its paces.  A simple example is operating a chemical detector on a 

small robot.  The design team may be interested in how well the detector responds under 

various environmental conditions.  They might want to determine if the power 

assumptions are valid, or to watch the message traffic under design time installed 

bandwidth constraints; the team will definitely want to store any data collected for future 

analysis. 

Researchers’ observations may be on a macro level; e.g., can robot X satisfy the 

requirement with sensor Y? If so, does it exceed expectations, or narrowly meet 

requirements?  Alternately, observations may be on a more microscopic level.  A 

research team may want to examine temporal relationships.  It is one thing to calculate 

bandwidth, quite another to be operating concurrently with other unknown elements in 

the field.  For micro-observations, researchers and engineers may want the design data 



64 

flow to project visual information to them, communications lines that change color 

depending on available bandwidth or color-coded nodes that are communicating or not. 

4. Analysis 

Successful work depends on a number of factors. Data collected at test time 

should be linked to the design time diagram.  Standard analysis components should be 

available, as well as capability and support for creating new analysis components.  

Analysis results should be comparable to other configurations’ analyses and stored in a 

form compatible with the prototyping environment. 

5. Summary – Prototyping Environment Requirements 

This prototyping environment relies on software wrappers that encapsulate legacy 

artifacts in a consistent manner.  Separation by time and physical location of the Software 

engineers and programmers mandate wrapper creation support and guidelines. Ultimately, 

a searchable data repository for, components, models, rule sets, and test results is needed 

as in any modern engineering effort.  A set of focused Graphical User Environments 

enhances model and instrumentation understanding. Engineers create Prototypes to 

interact with an aspect of the system under test; instrumentation and monitor components 

are necessary.  

 

 



65 

VI.   PROTOTYPING SYSTEM AND RESULTING PROTOTYPE 
ARCHITECTURES 

A. INTRODUCTION - ARCHITECTURE DISCUSSION 

The Software Engineering Institute Website at Carnegie Mellon [29] has many 

definitions of Software Architecture, one of which is prominently displayed at the top of 

their Software Architecture Definition Web Page and is attributed to software architect 

Eoin Woods [30]: 

"Software architecture is the set of design decisions which, if made incorrectly, may 
cause your project to be cancelled." 

In TARDEC researchers’ experience, projects are rarely cancelled at the 

appropriate time.  Many drag on for years, consuming resources and involving 

unsuspecting scientists and engineers as the original team dissolves or flees.  Eventually, 

either someone declares success, or a re-organization occurs, and the project quietly 

ceases to exist. 

D’Souzaand and Wills, in their book, Objects Components and Frameworks with 

UML [31], provide another definition of software architecture particularly appropriate for 

this work: 

 “The set of design decisions about any system that keeps its implementers and 
maintainers from exercising needless creativity.” 

This is appropriate, because they state exactly what researchers need to promote 

software reuse and remove the software creation burden from non-software engineers 

tasked with creating operational prototypes.  That is, this somewhat tongue-in-cheek 

definition helps guide us to a separation of concerns, a set of guidelines for composing 

the reusable components, and a disciplined approach to developing sets of potential 

prototype solutions.  In essence, engineers would eventually like to remove all creativity 

from the creation of the final software to create the prototypes.  The end-users creativity 

belongs at a higher level of abstraction. This effort will show the utility of transferring the 

end-users creativity into a constrained, graphical environment that leads to composed 

and/or generated code. 



66 

A discussion of software architecture is important to this dissertation because it 

sets the stage for what is to follow.  In the “Handbook of Software and Knowledge 

Engineering,” Rick Kazman discusses three reasons why software architecture is 

important [32].  These are Communication, Early Design Decisions and Transferable 

Abstraction (a characteristic of an architectural model that make it useful in similar 

systems). A common element of the definition of architecture, from the physical domain 

to software is that architectural documents are high-level abstractions that describe a 

high-level design of the system.  Note that the word “abstractions” is plural.  There can 

be many views of the system.  In the physical world of cities and buildings, people often 

talk of the “style” of a particular architect that refers to the external view.  Observers 

intuitively understand that, at lower levels, the architect or more often, the team of 

architects selects from a variety of architectures for interior design and building services, 

such as elevators, plumbing and electrical.  The same holds true for software; even a 

radically new top-level architecture may reuse a common database architectural view 

(Figure 16) if it needs database services, or contains an internal database. 

External user

Internal User

Transaction

User

Database

Transaction Server

Programmer

DB Adm

Management Authorization

Manages

Transaction Authorization

Authorization
Update Programs

<<extend>>

<<extend>>

<<include>>

<<include>>

<<include>>

 
Figure 16. UML Use Case Diagram for Top Level Database Architecture [From 

Ref. [32]] 

 
 
 
 



67 

B. ARCHITECTURAL ANALYSIS IS NECESSARY AT MULTIPLE 
LEVELS 

As mentioned above, System Architecture is a high-level abstraction.  It is a 

reflection of system requirements and provides a high-level view of the implementation.  

Since the system may consist of multiple features, the top-level architecture may 

explicitly force a particular lower level architecture, or it may allow flexibility. 

Figure 17 below presents the Use Case diagram for the top-level architecture of 

this effort.  Recall that primary motivations for architecture representation are 

Communication, Early Design Decisions and Transferable Abstraction.   

 

Figure 17. Use Case Diagram for Top Level Prototyping Environment 
Architecture 



68 

1. Communications 

The first motivation for creating architectural representations is communication.  

For this very reason, the top-level drawing is simple and abstract.  UML representations 

are growing in favor, but the architect needs to create a representation understandable to a 

general audience to achieve buy in; if the managers and other non-software types have 

difficulty understanding the notation, they potentially loose interest.  Therefore, simple 

and abstract is better.  

A single diagram is not usually able to communicate all information.  The UML 

has a collection of diagram types. A Use Case diagram shows high-level relationships 

between activities and actors, the functionality the system. Other views are necessary to 

convey additional information.  Sequence Charts provide a logical view. They show the 

functionality inside the system and dynamic behavior. 

 

Figure 18. UML Top Level Sequence Chart View for Software Engineer  



69 

 
Figure 19. UML Top Level Sequence Chart View for Domain Engineer  

 

 

Figure 20. UML Top Level Sequence Chart View for Programmer  

 



70 

 
Figure 21. UML Top Level Sequence Chart View for Technician 

 

Figure 18-Figure 21 add dynamic information to the Use Case diagram for each 

of the four principle actors.  Early communication of the required interaction may help 

managers understand scheduling and staffing concerns.   

2. Early Design Decisions 

The second motivation for creating architectural representations involves early 

design decisions.  According to M. Simos, et al. [33], the list of architectural styles for 

software is very short: 

− Generic Architecture – Fixed frame with sockets that allow alternative and 
extension components.   Fixed Topology and fixed interfaces. 

 
− Highly Flexible Architecture – Supports variations on its topology can yield a 

particular generic architecture. 



71 

At the domain level, designers want a generic architecture.  This type of 

architecture is amenable to a variety of positive attributes for a domain-specific language. 

Generic Architecture: 

− Is a candidate for automation: well understood; 

− Has defined constraints; 

− Is repeatable; and  

− Is easily versioned. 

At the design level, designers want flexibility.  Well-trained, highly skilled 

software engineers (possibly with a robotics background) must be able to express their 

creativity and produce the domain models for use in a more structured environment. 

Lacking Software engineers with a robotics background, management must make 

commitments for robotics engineers’ time for collaboration with the software engineers. 

3. Transferable Abstraction 

The third motivation of architectural description is transferable abstraction.  A 

transferable abstraction describes an architectural model that is useful for current 

purposes and reusable in whole or in part.  This is a common in the world of physical 

structures.  For example, there are many different realizations of colonial architecture for 

homes and offices.  All have the same abstract design, and may share common sub 

abstractions, such as interior stairs placement, attic space and foundation properties, but 

the size, interiors and building services are different.  The same goes for software 

architecture.  Being able to transfer architectural abstractions sets the stage for potential 

design and implementation reuse.  In the future, researchers might see this architecture 

used for other distributed systems, for future implementations of production robotic 

software or for an implementation of a “Service Oriented Architecture” for robotic truck 

fleets. 

Returning to Figure 17 we find a Use case diagram representation of the 

proposed system.  As you can see, it is a simple diagram of high-level abstractions.  

There is little concrete information about implementation.  The abstractions indicate a 

collection of flexible sub-architectures, the realm of the software engineer.   



72 

These include : 

− A Meta-modeling environment, Meta-modeling is the realm of the 

software engineer in consultation with the domain engineer; 

− A domain modeling environment, domain-specific modeling is the realm 

of the robotics engineer; 

− A rule set for encapsulating software engineering knowledge for use by 

the domain engineer; and 

−  The product, the realm of the user, and a tool for the technical evaluator 

of the robotic system in this case.  

a. Component Repository 

Staring in the upper left corner, there is a block labeled “Component 

Repository.”  This block represents a storage abstraction.  It can be as formal as the 

database depicted in Figure 16, or it can be a simple set of files in a folder*.  As the 

project matures, we expect the former, but there may be some new storage paradigm 

implemented in the future.  

Accessibility is a function of the availability of the components.  

Components are subject to the owning entity’s access policies. If that entity is a public 

web site authorized users of the website can access the component.  On the other extreme, 

access may be via a private file system, as in the case of the experimental implementation.  

This limits sharing to “chunks” of release components.  The ultimate solution is a 

database with variable access. 

 

                                                 
* This research refers to the file system implementation of the component repository as  the “codebase”  

during experimental implementation. 



73 

b. Users 

In the middle of Figure 17, the actor icons indicate primary human 

interaction with the system.  There are no exact limitations, but we notice a progression 

of responsibility from the software engineer and programmer at the top to the technician 

at the bottom.   

In reality, there will be a cyclic interaction among the actors in any 

prototyping exercise.  In fact, a failure to achieve feedback indicates that the process has 

broken down and is in need of stimulation. 

c. Foundation 

The underlying and implied foundation to any engineering effort is basic 

tools and guidelines.  These may include editors, XML parsers, design patterns and text 

files describing requirements and standards.  If any of these goes beyond commonly 

accepted or understood practices, then an explicit description must be included as, at 

minimum, an annotation to the architecture. 

d. Components 

Put most simply, components are chunks of code.  Ideally, they would be self-

contained and independent of other concerns.  This ideal definition leads to the potential 

for code bloat.  Consider a mechanical system where a gear is a component.  A gear 

requires a shaft. Imagine the consequences if a vendor were required to include every 

possible shaft length with the gear.  Similarly, components in this effort use messages.  

Rather than supplying every potential message strategy, the components rely on being 

supplied with a message object, itself a component of the system. 

The upper left hand block of Figure 17 represents reusable components.  

These components are stored in the component repository when completed.  These 

components compose the final codes for each node in the prototype.  The components are 

constructed using design patterns referred to in the bottom block.  Different types of 

components will use different design patterns.  The design patterns are necessary to 

insure that the interfaces are of the proper type at composition time.  This part of the 



74 

architecture is not only in the realm of the software engineer, but also indicates a 

temporal abstraction.  The guidelines and components are a prerequisite to the blocks 

above.  This relationship is not a hard one; alternate guidelines can exist in parallel but a 

single set of guidelines will apply to a single Meta-model.  In order for the Meta-model to 

work, it needs to “know” what components will be available to the final composition.  

The component repository grows with time, but Meta-models will need to be versioned to 

take advantage of additional components. 

e. Meta-model 

The lower left block up represents the GME modeling environment, which 

begins with a Meta-model.  Meta-models define architecture.  Software engineers create 

Meta-models with prior knowledge of the domain or in collaboration with domain experts. 

Meta-models are the key to domain architecture. The Meta-model encapsulates high-level 

information about the system.  The Meta-model defines components, component 

relationships and constraints.  It is a vehicle to encapsulate software engineering 

knowledge and facilitate transfer of this knowledge to domain experts.  A complete Meta-

model is a prerequisite to domain modeling. 

f. Domain Model 

Within the GME block of the architecture is the domain-specific modeling 

tool.  The environment generates this tool from a Meta-model.  Concrete models of the 

system under construction may be instantiated from the domain-specific modeling 

environment workspace.  There may be one or many domain models created from a 

single Meta-model.  Icons specific to the domain under examination are part of the 

domain-model generation process.  This enables domain engineers to create system 

models for a variety of scenarios.  For instance, the Meta-model may include a 

communications element.  The domain modeler may choose from a variety of concrete 

communications components like serial, TCP/IP or CAN communication components 

represented by unique descriptive icons.  The domain modeler is also able to select the 

individual node artifacts that will participate in the system from a collection of high-level 



75 

domain-specific artifacts.  As an example, a mobility platform might be a stylized 

representation of a mechanical man. 

g. Putting it All Together 

Moving up to the fifth level, Composition / Generation allows the domain 

expert to create the software elements necessary, again without having to know the 

software engineering details necessary to accomplish this task.  Again, the goal is to 

separate concerns.  This architecture allows the experts to do what they know.  Software 

engineers do not need to learn intricate details of the realization of the system; domain 

engineers do not need to know the details of the software engineering needed to provide 

them with this tool.  “Architects” create models of buildings, structural engineers flesh 

out the design depending on location, customer and environmental factors. Tradesmen 

build the building. 

Above the fifth block is yet another dashed line - another separation of 

responsibility and another temporal break point.  Transitioning across this line is not 

possible until the domain model is completed and the system assembled.  It also is the 

transition from design to a reification of the system.  Above the line is the product of 

interest, software, and documentation necessary for aggregate prototype operation. 

h. Nodes 

The top pair of blocks represents the assembled programs and 

documentation.  Codes for the individual nodes are available in the assembled programs 

block.  The aggregate of the node codes is the system artifact. In a prototyping 

environment, the artifact runs through its paces in a variety of mission scenarios.  The 

final artifact may be a simulation, a hardware-in-the-loop simulation or a pre-production 

hardware prototype. The block labeled assembled program is an abstraction of a 

collection of software programs to run a distributed system.  In the case of a robotic 

prototyping system, each node has a run-time architecture associated with it (Figure 22). 

A later section, describes a design for a robotic prototyping system based 

on this target run-time architecture. 



76 

 
Figure 22. UML Views of the Robotic Prototyping System Node Run-Time 

Architecture 

 
 
 
 
 

 

Class Diagram 

State Chart Diagram 



77 

C. SUMMARY - ARCHITECTURE 

The architecture of a system imposes discipline.  It defines available elements, 

how those elements relate to each other and constraints.  Architectural views are used to 

examine system characteristics early in the life-cycle and make changes while change is 

inexpensive. Later in the life-cycle, architecture views guide maintainers. 

Architectures are abstract. They can be used to create similar systems, or can be 

examined to find the successful aspects of a system to apply to a new system. 

Architectures have several levels.  This effort first defines a modeling architecture. 

The modeling architecture allows the software engineers to create Meta-models, which 

are architectural descriptions of a domain specific modeling environment.  Domain 

engineers, then, create instances of the domain architecture, using the modeling 

architecture. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



78 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



79 

VII. DESIGN OF PROTOTYPING ENVIRONMENT 

A. DESIGN ASSUMPTIONS 

This effort begins with design assumptions based on experiences gained over the 

last several years by TARDEC engineers and researchers. The first assumption is that 

they have a collection of artifacts that they are interested in integrating.  These artifacts 

may include Operator Control Units, Platforms (robots or unattended sensors), mission 

sensors, proprioceptive sensors, control algorithms, or mission packages (arms, masts 

etc.), just to name a few.  In most cases, these disparate artifacts do not conform to 

messaging standards, and in most cases, researchers do not have access to the embedded 

processors to include additional code. Indeed, in most cases, they do not have access to 

the code, or access to proprietary compilers needed to modify the code. In essence, they 

want to integrate a collection of black boxes.  They have some knowledge of the physical 

I/O, but they often have to ferret out the software data structures needed to communicate, 

either from code or by inspection of the run-time communications.  In the worst case, 

they will run all integration software on auxiliary processors. 

Creating interfaces to these artifacts can be an expensive and time-consuming effort; 

effort software engineers would like to retain and reuse.  They would also like to make 

this information and knowledge usable by non-software experts. 

The second assumption is that in many government robotics labs, software 

engineers are a scarce commodity.  That is not to say there are no software “people;” 

these are talented individuals, but they are usually mechanical, computer or electronics 

engineers with a few programming courses, and are not trained in the intricacies of 

modern software design and development paradigms.   

In summary, the worst and often typical case is that a research team needs to integrate a 

collection of artifacts that they can only access via external interfaces.  The engineers and 

scientists are usually robotic specialists with a smattering of software knowledge; 

experienced software engineers and experiences robotics engineers with intensive 

software engineering experience are in short supply. 



80 

The task then is to develop guidelines, methods and tools to: 

− Capture Software Engineering Expertise. 

− Transfer this knowledge to Domain Engineers. 

− Capture software elements for reuse. 

− Capture configuration and execution data. 

− Provide tools to simplify the integration process. 

B. MODEL-DRIVEN ENGINEERING 

This design is based on Model-Driven Engineering, a relatively new software 

development paradigm.  Product line development for distributed embedded systems, 

such as aerospace and automotive, has become extremely complex. Developers spend 

years mastering platform APIs and usage; even still, they often only come to a complete 

understanding of a subset of the platforms they develop for regularly. Model-driven 

engineering focuses on abstractions particular to the application problem space and 

expresses designs in terms of concepts from that space [34]. 

Model-driven Engineering combines software components constructed to 

conform to specific design patterns with Domain-specific Languages. These languages 

are described in a Meta-model, often graphical, that defines the relationships of 

abstractions in the domain.  Engineers create the Meta-models in UM, the language of the 

software engineer, and transform them into a constrained design environment, usually 

using graphical icons that pictorially describe the abstractions in terms understandable by 

domain engineers.  

The domain engineers then create concrete instances of the Meta-model using 

icons that represent components available for composition of the final product.  From the 

completed design, program generators are able to assemble components and create glue 

code to allow them to work together. 

 

 

 



81 

C. STANDARDS & TOOLS 

In many research applications, particularly in the early phases, standards often 

take a back seat.  Engineers are encouraged to think outside the box or standards do not 

yet exist.  For this effort, however, several standards are of the up most importance.  

1. Extensible Markup Language (XML)  

 XML standards are important at several levels. XML representations are both 

machine- and human-readable. XML representations of models within a tool suite 

facilitate transitions between different phases of model development and allow the use of 

automated tools.  XML representations of models allow archiving and storage in a neutral 

format. Finally, XML representation of models is often a prerequisite for transfer 

between different tools, or between tools running on different operating systems. 

Engineers often refer to XML data sets as self-describing data.  This feature 

makes possible run-time configuration of instrumentation.  The instrumentation parses a 

run-time data stream, containing a set of messages, and processes only messages of 

interest.  The user changes configuration of the instrumentation at run-time based on 

message descriptions in a schema or directly from the messages.   

2. Messaging  

The Joint Architecture for Unmanned Systems (JAUS) [35], transitioning to an 

SAE standard, provides a common messaging framework for this effort. JAUS messages 

provide a path forward to a production system. An overview of JAUS is included in 0.  

Different domains may use different message sets.  Larger unmanned aerial 

vehicles frequently use the North Atlantic Treaty Organization’s (NATO) unmanned 

aerial vehicle (UAV) interoperability standard, Standardization Agreement (STANAG) 

4586 [36].   Military war-gaming uses Institute of Electrical and Electronics Engineers 

(IEEE) Standard 1278, Standard for Distributed Interactive Simulation (DIS) [37].   

Common messaging is important to this research since it reduces the level of 

effort required to bring legacy and experimental artifacts into the prototyping process.  

Consider a collection of N artifacts, each with a unique communication protocol.  



82 

Introducing artifact N + 1 requires potentially creating N new protocol adaptors. On the 

other hand, using a common message set requires creating one protocol adaptor for each 

new legacy item (Figure 23). Federations of artifacts communicate using a common 

message set.  Wrapping each artifact with an adaptor to the common message set allows 

it to participate in the federate. 

 
Figure 23. Visualization of the Number of Protocol Adaptors For Ad-Hoc Vs. 

Common Messaging Scenarios 
 

Different domains may use different message sets.  Larger unmanned aerial 

vehicles frequently use the North Atlantic Treaty Organization’s (NATO) unmanned 

aerial vehicle (UAV) interoperability standard, Standardization Agreement (STANAG) 

4586 [36].   Military war-gaming uses Institute of Electrical and Electronics Engineers 

(IEEE) Standard 1278, Standard for Distributed Interactive Simulation (DIS) [37].  

Conceivably, JAUS-capable robotic system prototype experiments will interface with 

existing federates of artifacts communicating with either of these protocols.  In this case, 

engineers create bridge software to allow an entire federate to participate in the others’ 

domain as if the federate was a single artifact with many facets (Figure 24). 

 
 
Message Set A 
Federate 1 

N = 12, 12 adaptors N = 12, 66 adaptors 



83 

 
Figure 24. Connecting Two Federations Requires Only One Communications 

Adaptor 

 

Messages in any distributed system, by necessity, will morph between formats.  A 

system not designed for extensibility contains messages that have two distinct 

realizations, a binary wire format for speed and an internal format understandable to the 

target program.  This is the case in many proprietary systems, as well as the current 

definition of a JAUS based system. 

The XML enters the picture, first, as a tool to describe messages.  In the current 

implementation of JAUS, XML documents describe the messages; however, an official 

JAUS XML schema does not yet exist.  The logical next step is to create an official JAUS 

XML schema.  This schema is a tool to generate and operate on intermediate XML 

representations of the JAUS messages.  Intermediate XML representations take 

advantage of XML aware instrumentation tools [38].   

 

 

 

 

 
 
Message Set B 
Federate 2 

 
 
Message Set A 
Federate 1 



84 

Tools can provide: 

- Run-time monitors. 

- Logging. 

- Fault insertion. 

- Temporal logic checking. 

- Operator Alerts. 

- Run-time operational modification. 

 

Figure 25. Translating Messages across Three Formats [After Ref. [38]] 

 

Figure 25 depicts the possible formats within a single paradigm.  Binary is the 

choice for on-the-wire format, due to compactness and speed.   Programming Language 

objects are necessary to communicate within an application, and finally XML formats are 

desirable when a system needs to expect the unexpected. Many current operations do not 

require the additional translations to and from XML.  This is mainly because current 

scenarios are not readily extensible, or require vendor support for extension.  Adding the 

alternative XML translations opens up a world of opportunities.  Not only can developers 

monitor current activities, but also they can make use of the XML tool set for translation, 

tool access and readable logs.  

XML 

Binary 
Format 

Programming 
Language Objects 

Monitored 
Operation 

Un-monitored 
Operation 



85 

Although various arbitrary vehicles in and entering the inventory, do not all play 

by JAUS messaging, the XML dimension opens the door to a common data model.  In his 

2006 dissertation, D. Davis [39], concludes, “…there is enough commonality between 

various vehicles to enable implementation of a single data model suitable for the 

representation of arbitrary vehicle tasking, messaging and mission results and that XML 

Schema provides a suitable mechanism for formal definition of this data model.”  This 

research recognizes the importance of XML Schema in automating transitions between 

message formats.  Further efforts with JAUS and translations between standards will 

examine the ability of existing and new XML Schema documents to create translations 

between protocols. 

D. COMPONENTS 

Components are the key to software reuse.  Software engineers create a collection 

of components.  These components later become a selection of model elements selectable 

by domain engineers. 

Clemens Szyperski writes, “All components exist in a flat universe. This is an 

important property, as it allows servicing of components without having to know all 

places where that component has been used [40].”  This indicates that components should 

support a consistent interface and contract.   

Both Szyperski, in “Component Software” [41]and Czarnecki and Eisenecker, in 

“Generative Programming: Methods, Tools and Applications [42]” agree that a 

component:  

− Is a unit of independent deployment; and 

− Has no externally observable state. 

Szyperski contends that a component is a unit of third party composition, while 

Czarnecki and Eisenecker relax this requirement. This dissertation work agrees with 

Czarnecki and Eisenecker, as long as the first two requirements hold. Components may 

be created internally or externally. Components are simple building blocks combinable in 

is as many ways as possible. 



86 

For the purposes of this design, there are three general classes of components:  

• The endpoints, the individual hardware artifacts or simulation artifacts, along with 

wrappers (software), that at a minimum provides a mechanism to allow artifacts 

to be connected, are components for our purposes. 

• An arbitrary number of optional components to instrument the prototype, induce 

disturbances, simulate communications protocols, throttle communications speed 

and/or provide translations to name a few. 

• Communications components that connect the nodes to the system.  These may be 

very simple components such as TCP/IP or serial connection code.  Alternatively, 

they may be very complex communication components such as self-organizing 

mesh networks, TCP/IP networks with additional discovery algorithms or entirely 

new communications components. 

Each of the classes should conform to a common interface to allow automatic 

construction of the resulting run-time code. 

E. DESIGN PATTERNS 

Design patterns are high-level abstractions of common design problems.  They 

help designers describe components, or collections of components.  By using design 

patterns, they can develop designs that are extendable and mutable. If they create designs 

that specify a particular design pattern, they can take advantage of polymorphism, create 

new behaviors within this pattern later, and reuse the high-level design.  This means they 

can add new artifacts, optional components, or communication components as needed. 

To use design patterns effectively, engineers take advantage of common abstract 

interfaces.  The glue code generators defined at the design level bring together a 

collection of interfaces; the details of the actual implementation below the interface are 

unimportant to the glue code generator.  As an analogy, think of a soda bottling plant.  

The design for the plant includes a capping machine.  The capping machine is concerned 

with the interface between the bottle top and the cap.  It is not concerned with the flavor 

of the beverage inside the bottle.  When modifying the plant design to change from a 



87 

crimped cap to a screw cap, all the designers need to be concerned with is the interface, 

they do not need to be concerned with the flavor of the beverage that is being contained. 

Design patterns also compare well to composite digital devices. When creating an 

electronic design, designers refer to reference material of discrete components.  These 

components have a well-defined interface.  Designers may be concerned with some of the 

characteristics of these components dictated by their internal makeup, such as power 

consumption or latency, but are not usually concerned about the intricate details.  What 

designers are concerned about is the interface. In order to compose a circuit, designers 

need to know the pin outs and function of the device.  They find this in a reference 

volume or specification sheet from the manufacture.  In many cases, there may be more 

than one manufacture; the internals of the chip may be different, but the interface is 

common. This allows designers to use tools that can layout the traces on a circuit board.  

Design patterns are becoming a similar abstraction for software.  A particular 

design pattern specifies an interface and function of interest to the high-level designer.  

Component developers do not need to know in what context the design pattern is used; 

they need to know the function and interface they are creating.  

Reference material is becoming available for software design patterns, just as 

there are reference volumes for electronics. There are several excellent books available 

for understanding design patterns: 

− “Design Patterns, Elements of Reusable Object-Oriented Software [43]” provides 

a catalog of common general-purpose patterns.  

− “Head First Design Patterns [44]” is a very readable introduction to the most 

common design patterns. It provides detailed examples with UML descriptions 

and Java code.  

− “Pattern-Oriented Software Architecture, Volume 2, Patterns for Concurrent and 

Networked Objects [45]” provides patterns to solve the often-difficult problems 

associated with communications in distributed systems.  



88 

There are also many web-based references, such as Bob Tarr’s lecture Notes, 

“Design Patterns in Java, http://www.research.umbc.edu/~tarr/dp/fall00/cs491.html 

[46].” 

Three main design patterns are used in this dissertation: 

− Adaptor.  The adaptor patterns wrap the legacy and research artifacts that 

represent the physical and control nodes of the robotic system.  The input and 

outputs of the adaptor pattern will be XML representations of JAUS messages.  

The adaptors translate the JAUS messages to the software and physical formats 

necessary to the artifact. As an example, the ODIS-T2 robot accepts proprietary 

data packets via a serial port.  The wrapper will convert to and from JAUS 

message format to ODIS-T2 format; it will also transport the proprietary data 

packets via a serial link. 

− Observer.  The observer patterns will be responsible for passing the JAUS 

message to any instrumentation, modification or other optional component 

specified in the design. Observers will insure that the appropriate components see 

and/or operate on each incoming and outgoing message. 

− Factory.  The components will be composed into a node of the system via factory 

patterns.  The communications components are expected to vary widely, from 

simple serial to very complex mesh networks with discovery; adaptors will wrap a 

growing number of legacy components Using factory patterns insures that the 

system will be extendable.  As the component collection grows, only the concrete 

components will change.  Using a factory design pattern will allow composition 

of nodes using new components and avoid instantiation of application specific 

classes.  

− Researchers may use additional design patterns in conjunction with the main 

design patterns within components.  This will simplify modifying and expanding 

components as the system matures. 

 

 



89 

F. META-MODEL 

The Meta-modeling environment for this project is the Generic Modeling 

Environment (GME) [47], an open-source, visual, configurable environment for creating 

Domain-specific Modeling languages.  GME use starts with configuration of the 

modeling environment, i.e., modeling of the modeling process or creating a Meta-model. 

The modeling language is UML class diagrams.  Figure 26 shows a simple GME Meta-

model for a robot system, the work under discussion. 

 

 
Figure 26. Generic Modeling Environment, Meta-model of a Robotic System 

 

The Meta-model is a source document.  That is, unlike previous CASE models of 

the 1990’s, it is not left behind to get out of synchronization with the implementation. 

The Meta-model defines a paradigm, a set of rules that will configure the GME for a 

specific operation.  

In the case of Figure 26, the top-level object is a model labeled “Robot.” 

Contained in the Robot Meta-model are messages and artifacts.  Artifacts are abstract; 



90 

they do not have any implementation. Inherited types, bottom-level objects or atoms 

define the artifacts.  There are five different types of atoms possible to represent artifacts, 

and a robot model can contain one or more artifacts. Finally, connections between the 

artifacts are “messages;” artifacts can send or receive zero or more different messages.   

G. DOMAIN-SPECIFIC MODEL LANGUAGE 

The GME tool generates a Domain-specific Modeling Language (DSML) from a 

corresponding Meta-model. Note that due to configuration of the Meta-model, domain-

specific icons that represent their functionality in terms of the domain of interest, in this 

case, robots, now represent the artifacts.  

A domain engineer manipulates the DSML modeling environment to create a 

prototype design. The domain engineer selects from a palate of approved abstract 

artifacts, [controls, sensors, platforms, Operator Control Units (OCU) and manipulators] 

and creates a model by connecting them in a meaningful way (Figure 27).  The 

underlying components that will be used are aspects of the artifacts dragged onto the 

workspace.  

There may be any number of models created by the domain engineers.  The limit 

on the number of models possible is a function of the cardinalities designers and 

engineers imposed in the Meta-model and the number of component instances available 

for each artifact.  This particular model is of three robots, a leader and two followers.  

Each has a GPS positioning sensor and the two followers have distance sensors.  The 

waypoint driver control computes waypoints for the two followers based on the input 

from the five sensors.  The waypoint driver passes new messages to the primitive driver 

to control the two follower robots and receives messages from the OCU to control the 

leader. For instance, OCU messages influence the waypoint driver to vary the distance. 

 



91 

 
Figure 27. Generic Modeling Environment, Domain-specific Modeling 

Workspace 

 

The Meta-model-to-model translation facilitates transfer of specific software 

engineering knowledge to non-software domain engineers.  The domain engineers use the 

domain-specific model to compose models of instances of a “robotic system product 

line.”  This allows project leaders to control development and manage differences while 

leveraging common characteristics of the application domain [48]. 

H. CODE COMPOSITION / GENERATION 

The ultimate goal of this research is to free the domain engineer from the arduous 

task of creating code for prototype robotic systems.  All code needed should be created 

by software experts and stored in a repository, so that the domain engineer can select the 

icons that represent collections of code.  The domain engineer selects a particular code by 

completing an annotation in the domain model. 

 



92 

The domain model completed by the domain engineer is represented by an XML 

file.  This file contains all the information needed to recreate the domain model.  It also 

contains all the information needed to compose components and create glue code for the 

robotic system. 

 
Table 1. Fragment of XML Code Generated by Domain Model Instance 

 

Table 1 is a fragment of code from the domain model represented in Figure 27 

above.  Remember, this is a simplified model created for illustration purposes only, there 

are no attributes associated with the atoms (icons) or connections (lines).  It also does not 

have lower level components associated with it that would be necessary for complete 

configuration of the artifacts for use in a prototyping system. 

Even so, complete robotic system code could be created from the XML file 

represented in Table 1. One atom is shown, the primitive driver control.  Both the 

primitive driver and the waypoint driver are simply controls in the Meta-model.  In this 

domain model, the XML <name> element differentiates them.  The GME environment 

… 
<atom id="id-0066-0000000c" kind="Control" role="Control" 
relid="0x15"> 
     <name>Primative Driver</name> 
     <regnode name="PartRegs" status="undefined"> 
          <value></value> 

<regnode name="Aspect" status="undefined"> 
                <value></value> 
                <regnode name="Position" isopaque="yes"> 
 <value>765,72</value> 

</regnode> 
           </regnode> 
      </regnode> 
</atom> 
<connection id="id-0068-00000001" kind="Message" 
role="Message" relid="0x5"> 
     <name>Message</name> 
     <connpoint role="src" target="id-0066-00000001"/> 
     <connpoint role="dst" target="id-0066-00000004"/> 
</connection> 
<connection id="id-0068-00000005" kind="Message" 
role="Message" relid="0x13"> 
     <name>Message</name> 
     <connpoint role="src" target="id-0066-00000001"/> 
     <connpoint role="dst" target="id-0066-00000005"/> 
</connection> 
<connection id="id-0068-00000008" kind="Message" 
role="Message" relid="0x16"> 
     <name>Message</name> 
     <connpoint role="src" target="id-0066-0000000a"/> 
     <connpoint role="dst" target="id-0066-0000000c"/> 
</connection> 
... 



93 

also assigns them “IDs,” which are used later by the XML <connection>/<conpoint> 

element to specify the source or destination points of the connection. 

Adding additional attributes to the Meta-model will allow additional tuning of the 

generated/composed code.  Enumerated attributes can constrain the domain engineer to a 

selection that may be a subset of all the components of this type, i.e., a particular set of 

sensors. 

To generate the code, the XML tree is parsed and, in this case, large components 

(containing predefined wrappers, instrumentation and communications) are written for 

each of the artifacts. Researchers can configure the components by using the parsed XML 

tree as input to a compositional script written in PERL.  Another possibility is to transfer 

the XML to a generative environment, such as an ECLIPSE project [49].  

I. MODEL-DRIVEN DESIGN CONCLUSIONS 

Model-driven Design has great potential to extend the software engineers 

knowledge to domain engineers.  It provides a vehicle for software reuse through the 

focus on predefined software components. It simplifies the job of the engineer creating 

the prototype system by allowing him to focus on the task at hand.  It also reduces the 

time and cost required to evaluate a new application or mission  

Since the Meta-model is the root of all the design efforts, subsequent activities are 

traceable to the initial Meta design level.  Finally, prototyping with Model-driven design 

provides path forward for implementation of final systems. 

 

 
 
 
 
 
 
 
 
 
 
 



94 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 

 



95 

VIII. EXPERIMENTAL IMPLEMENTATION 

A. INTRODUCTION 

This section details an experimental implementation of the approach described in 

the preceding part of this work.  Going back to Figure 17, this section addresses the 

implementation of the architecture.   

The model that will be examined throughout and defined in the Meta-modeling 

phase is simple, but common, especially in the early stages of system concept exploration. 

This section constrains the nodes of a system to having one output stream (they can have 

as many input streams as necessary).  Think of a sensor fusion scenario.  DoD researchers 

might want to create a system control node that integrates Laser Radar (LADAR), visual, 

and geospatial messages. Each message stream originates on a separate processor or 

microcontroller. A software control algorithm, along with a message stream from an 

Operator Control Unit, processes the set of input message streams.  The control transmits 

a single message stream with appropriate fused data. 

The first section will cover component concerns, including coding practices, and 

required design patterns.  It will also discuss simple matters, such as directory structure 

for the component repository.  This is mainly collaboration between software engineers, 

computer scientists and programmers to agree on common practices, like we all drive on 

the right side of the road in the US. 

The second section, Meta-modeling, discusses software modeling.  The model is 

primarily the work of a software engineer, in consultation with a domain engineer.  It is 

also influenced by previously agreed upon practices, design patterns and completed 

components. 

The third section, Domain Modeling, is primarily the responsibility of the domain 

engineer.  When the domain engineer finishes a model, the translation and code 

composition is dependent on up-front work performed by the software engineer.  

Lastly, the codes are distributed to the various nodes for operational evaluation, 

potentially, to evaluate hardware/software or to evaluate system level procedures. 



96 

The most important thing about this section is that it is the first step in an evolving 

system.  TARDEC engineers and researchers want to capture expertise and data as time 

progresses and be able to use it in new and interesting ways.   Component repository 

development is an ongoing process; capture as much as possible, use versioning as 

necessary, and purge when corresponding artifacts are no longer viable.   

The component repository, or more correctly, the structure of the component 

repository, is an input to a Meta-model.  Different Meta-models may specify different 

subsets.  Each Meta-model may spawn one to many domain models, depending on the 

richness of the codebase subset allowed in the Meta-model. 

Each Domain Model will produce one set of Node Codes, but researchers will be 

able to operate the system under evaluation in various scenarios. For instance, if they 

build the example system, they may operate it first with static obstacles for a first 

experiment, next they may add dynamic obstacles, and finally, they may introduce 

systematic faults at one or more nodes of the system to see how it operates under duress. 

See Figure 28.  

 



97 

 

Figure 28. High Level Deployment View, the Relationship between Components, 
Models and Applications 

 

B. COMPONENTS  

1. Component Repository  

One of the first implementation concerns is where the components of the system 

will be stored. This is a relatively simple decision, but it must be defined early to provide 

a starting point; call it the codebase. Component repository is a generic term used to 

describe the storage area for components, scripts and related documentation.  Ideally, 

software engineers would be implemented it as a network enabled repository, since a 

network enabled implementation allows multiple, geographically-dispersed users and 

contributors to the system. However, that imposes the administrative and security 

concerns researchers attribute to any shared system.  These concerns are not addressed 

here.  



98 

The component repository for this experiment is implemented in a simple file 

system on a local workstation.  The important issue is component repository content, as 

well as the directory structure.   Designers must define directory structure before 

modeling, since the rule sets that compose the final node codes are dependent on the 

directory structure.   

 

 

Figure 29 . Code Repository in Windows Directory Structure 

 

Figure 29 shows the directory structure used in this first experiment.  The root of 

the component repository is the directory c:\apex.  Two subdirectories are codelocker and 

models; codelocker is the main and most important subdirectory, while the models 

subdirectory is just a convenient place to store Meta-models, Domain Models, and XML 

versions of the domain models as well as Ruby scripts created after a Meta-model is 

defined. 

 

C:\apex 

codelocker 

adaptors

optional

Communications

Nameadaptor.Java
Nameadaptor.txt…

…

…

models 

… 

Versionnamedomain.xml.
Versionname.rb

VersionnameMeta.mta
VersionnameDomain.mga



99 

The codelocker subdirectory contains three subdirectories: 

− Adaptors; 

− Optional; and 

− Communications. 

Again, software engineers create these directories as a convenience for humans, in 

this case to separate different component types.  All three of these directories contain two 

types of files: components and component user documentation.   

Rules merge the abstract domain model with concrete Java components.  The 

structure for the codelocker mirrors the atomic or leaf nodes of the feature model; where 

the structure identifies the concrete components in the models, is parallel to where they 

are found in the codelocker.  This makes reading and writing rules less cumbersome.   

Storing files on an isolated computer is not the ideal situation, but is necessary during the 

research phase of this work.  A first-level expansion would be to create a shared file 

system, but in the TARDEC lab environment, this only allows local users access.     

A higher-level solution would be to encapsulate the code objects within a 

database.  The tables that have the code could then have related versioning information 

and fields to help search for code objects, created within a time period, by a particular 

group or for a particular artifact. 

2. Components 

In general, engineers could create components in virtually any language. If they 

do so, they also need to provide mechanisms to cope with a non-homogeneous system, 

adding significantly to the environment’s complexity.  Alternatively, component code can 

be restricted to a single language.  For the work TARDEC engineers and researchers are 

doing, and for work projected in the near future, they chose the latter alternative.  For this 

experiment, all component codes are in the Java language.   

There are many compelling reasons to use Java for prototyping: 

− There is a large open-source community associated with Java; 



100 

− Compilers and run-time environments are available for a large number of 

processors; 

− It is an object-oriented language; and 

− It has an intimate association with XML. 

As mentioned above in the directory structure section, engineers separate the 

components into three categories: Adaptors, Optional and Communications.  The Java 

files here will not be complete implementations.  Complete implementations will be 

reserved for future efforts; the purpose of this experiment is to demonstrate the systems 

engineering approach described in the first part of this dissertation up to the point of 

bringing the code together.  Creation of Java Libraries will require time and effort. 

3. Documentation 

In prototyping, we are working with a collection of hardware and software 

artifacts.  Some may be Commercial-Off-The-Shelf (COTS) items.  Others may be 

artifacts remaining from previous research projects.  We start with a full compliment of 

hardware, software and ancillary cables, connectors and power supplies. Over time, 

however, we see these systems begin to “dissolve;” documentation is separated, cables 

get lost and software gets misplaced. We can reverse or prevent this phenomena by 

adding information about these artifacts and their environment to the component 

repository at a level parallel to the Java components. 

Each Java component in the component repository will have associated with it a 

text file containing documentation, or pointers to documentation.  This documentation is 

not used directly by the tools or modeling environment. The documentation files 

associated with the components are essentially fragments of a user’s manual.   The 

domain modeler needs to be aware of this documentation, because in some cases, the 

modeler will need to refer to it for information needed during domain modeling. 

Some of the information in the documentation will be component application 

specific, such as constants that the software engineer needs to consider at model design 

time, like a legacy artifact with a fixed serial speed. Other information will be necessary 

at system assembly time, as in the case of an adaptor that requires a special serial cable to 



101 

connect to a legacy artifact. These files will be collected by the rule set at the same time 

the components are assembled and placed in the same file structure where the completed 

wrapper code is stored.   

In the case of communications components, the documentation may be quite 

simple, perhaps the source of the code.  In other cases, the communications code may be 

more complex, as in the case of a component that represents a communications element 

of a framework that performs discovery, in which case, any assumptions needed to 

deploy the component are necessary as a guide to the software engineer creating the 

models in which it will be used. The complexity of documentation for optional 

components will depend on the complexity of the component.  A logger may include only 

the location of the log file, while a run-time monitor may include a pointer to an 

operations manual for that monitor. 

Adaptors are expected to have a collection of information unique to the artifact 

they are adapting; special cables have already been mentioned, but locked IP addresses, 

specific serial ports and other hardware parameters are also candidate information.  

Designers may need to add pictures, serial numbers and wiring diagrams, and sometimes 

may version adaptors to reflect changes to hardware configurations.  If that is the case, 

the documentation files should also be versioned to reflect the changes.    

4. Design Patterns 

As mentioned earlier, design patterns play an important part in implementation of 

understandable, reusable software systems. We include this discussion here, under 

components; since this is where structural (adaptor) and behavioral patterns (observer) 

are used and considered. 

The design patterns provide a common working ground for writing rules.  In the 

example, researchers use the observer pattern to pass messages between components 

within a node.  Now they know that intra-process communication only requires adding 

addObserver messages in the Java main class.  Rule developers do not have to concern 

themselves with pipes or other methods of inter-process communication. 



102 

a. Observer Pattern   

Designers use the observer pattern [50] to allow components in a node to 

communicate.  The individual components must pass messages amongst themselves.  For 

example, incoming network messages are instantiated in the communications component; 

the communications component needs to notify the next component in the node that a 

message is available.  In the observer pattern nomenclature, the communications 

component is a subject, and the next component is an observer.  When the state of the 

subject changes in a meaningful way, the subject notifies all of its observers.  The 

notification can be simple with no argument, or it can pass the message as an argument.  

In the former case, the observer must request the update after notification; this is 

sometimes called a pull operation. The latter case is called a push operation because the 

update information is pushed along with the notification. Here, researchers chose to push 

the incoming message as an argument of the notification to the observer (Figure 30).   

 
Figure 30. The Observer Base Class, UML Model of the Java Observer Design 

Pattern 
 

An observer can also be a subject.  Many optional components will take 

on both aspects of the observer pattern, as messages will pass through them.  Some 

optional components will operate on messages.  For instance, a throttle or leaky bucket 

Communications 

getMessage() 

Observable 

addObserver() 
deleteObserver() 
notifyObserver(msg 
Message) 
setChanged() 

<<interface>> 
Observer 

update() 

Optionals 

update() 
processMessage() 
 

observers 

subject 



103 

will be used to limit network bandwidth available or to introduce delays in order to 

simulate real-world network conditions.  In other cases, an optional component may 

change a message or even delete it to introduce errors.  Monitor and log programs do not 

necessarily need to be pass through, but are implemented as such in this experiment as a 

matter of design choice.  Since most adaptor and communications components have two-

way communications, most will be implemented using subject/observer patterns (Figure 

31). 

 

Figure 31. Collaborations for Components with Observer & Subject Roles Noted 

 

The observer pattern is a commonly used construct, and the Java language 

provides built-in support [50].  The Java.util.Observable class is a base subject class.  

Here, designers will use this class for all components by having abstract Adaptor, 

Communications and Optional classes that extend Observer.   Specific adaptors will 

subclass the adaptor class, Communications class and Optional class respectively. 

The Java.util.Observer interface is the observer interface.  The abstract 

base classes for the components will implement the Observer interface.  The concrete 

components will inherit both behaviors.  The actual use of the behaviors will be coded 

Platform-Adaptor 
 

In-Msg-Log 
 

Out-Msg-Log 
 

UDP-Comms 
 

notify(msg) 

notify(msg) 
notify(msg) 

notify(msg) 
notify(msg) 

notify(msg) 

notify(msg) notify(msg) 



104 

into the concrete components; that is, when a message has progressed through a 

component, a state change will be triggered that will cause the message to transfer from 

one component to another.   

Model 

 

XML <connection id="id-0068-00000006" kind="Connection" role="Connection" relid="0x5" 

isinstance="no" isprimary="yes" isbound="no"> 

  <name>Connection</name> 

  <regnode name="autorouterPref" isopaque="yes"> 

   <value>We</value> 

  </regnode> 

  <connpoint role="dst" target="id-0066-00000003" isbound="no"/> 

  <connpoint role="src" target="id-0066-00000004" isbound="no"/> 

 </connection> 

  

Ruby ["BumpControlAdaptor,” "optional,” "BumpControlTCPCommunications"] 

Java BumpControlAdaptor.addObserver(optional); 

Table 2. Different Levels of Dataflow Representations  

 

The component interactions are governed by having observers register 

with subjects.  This registration process takes place at the main program level, after the 

individual component objects are instantiated.  The registration process is governed by 

component dataflows defined in the Domain Model.  A list of ordered dataflow 

relationships is extracted from the Domain Model XML file and translated into a set of 

addObserver methods written to the main Java program by a Ruby rule. Table 2, depicts 

the representations of component dataflow as it progresses through the various 

transformations, beginning at the domain model where specific dataflows are defined.  

The first representation is a directional line in the domain model.  The domain model is 



105 

saved as an XML file and GME generates XML describing the dataflow.  The relevant 

data is extracted from the XML domain model and stored in a Ruby array in preparation 

for generating a Java message.  Finally, the dataflow is defined in Java as an Observer 

addObserver message relating the dataflow source component, “BumpControlAdaptor,” 

with the destination component, “optional.” 

b. Adaptor Pattern   

The adaptor pattern [52], also known as a wrapper was the original central 

idea that launched this work.  In the TARDEC lab, as in many robotics labs in DoD, 

Industry and Academia, researchers and engineers have a variety of platforms, sensors, 

control codes, and Operator Control Units.  Within a system, these items work together; 

trying to make the individual items work together across different systems is quite 

another matter.   

Army developers have a need to examine concepts rapidly, often as a 

precursor to entering into a formal development effort.  This necessitates rapid 

prototyping.  They are interested in assembling systems from parts of other systems as 

well as experimenting with control algorithms.  Ideally, all the parts would communicate 

via a common protocol, such as JAUS, but they do not.  In practice, programmers can 

write code that wraps the non-compliant devices and controls to allow them to 

communicate on a JAUS backbone. 

Programmers wrap non-JAUS-compliant artifacts with adaptor subclasses 

specifically written to convert legacy protocol to JAUS protocol (Figure 32). The base 

Adaptor class interface extends the Observer pattern. 



106 

 

Figure 32. The Adaptor Base Class, UML Model of Adaptor Design Pattern 
Class Structure 

 

The client passes in a JAUS message object.  JAUS message objects are 

themselves abstract, and implemented via a collection of subclasses.  Since JAUS is 

defined in XML, with a properly defined XML Schema, code to read and write JAUS 

messages can be created with the Java Architecture for XML Binding (JAXB). [53]  Of 

course, the class to pass a message to the legacy item must be hand-coded.  This may 

involve several JAUS messages to a particular adaptor since many legacy systems 

combine concerns in a single packet.  An example is the ODIS robot.  ODIS 

communicates by serial packets; the inbound packets, for example contain mobility data, 

camera control data and digital I/O data.  This requires a class that can read more than 

one type of JAUS messages, package the data into an ODIS packet and send it out via a 

serial connection, since the ODIS robot’s only physical interface to the world is a serial 

port on its internal microcontroller. 

 

 

LegacyDevice 

Legacypacket() 

Client 

notify(message) 

<<interface>> 
Adaptor 

update(message) 

ConcreteAdaptor 

update(message) 
processMessage() 
notify(message) 

uses 



107 

C. META-MODELING  

1. Introduction  

Modeling is central to this effort.  Researchers use Meta-models to capture 

software engineering concerns as paradigms and as a vehicle to transfer those paradigms 

to a domain-specific modeling environment.  Domain–specific design environments 

capture specifications.  They can be used to generate code in particular applications.  

Matlab [54] and Labview [55] are two examples of primarily graphical domain-specific 

modeling languages.  While they are useful in the domains for which they were 

developed, they are not easy to extend to an arbitrary new domain.  

2. Why the Generic Modeling Environment? 

When TARDEC researchers started this effort, they decided to use tools readily 

available to DoD engineers and scientists, wanting to avoid having to provide support 

across multiple proprietary tools or environments. The first consideration was to use tools 

that were developed for the DoD under any of a number of contracts.  In particular, they 

were concerned that the tools should not have a significant initial cost and should not 

have significant recurring support costs.  In particular, researchers wanted to use freely 

available software with little or no license restrictions for government use.   The Generic 

Modeling Environment (GME) is one of the tools that fit the requirements; funding for 

GME in part came from the DARPA Information Exploitation Office (DARPA/IXO). 

GME is a design environment specifically designed to be configurable to a wide 

range of domains.  GME is configured by creating Meta-models that specify a paradigm 

for modeling in an application domain.  The Meta-models are composed of syntactic, 

semantic, and presentation information, as well as organization, construction, and 

constraint information.  The paradigm created in the Meta-model defines a family of 

application-specific models. In the GME Environment, the Meta-model of a specific 

paradigm is used to automatically gene a target domain-modeling environment (Figure 

33). 

 



108 

 
Figure 33. Overview of the Generic Modeling Environment; Software Engineers 

Create Meta-models, Meta-models Generate Domain Modeling Environment, 
Domain Engineers Create Domain Models 

 

3. GME Concepts 

GME supports a variety of modeling concepts [56] that engineers use to create an 

architectural description or Meta-model.  These concepts include hierarchy, multiple 

aspects, sets, references and constraints.  These concepts, when composed in a 

meaningful way, specify software architecture [57].   

Meta-modeling 
Environment 

Domain 
Model 

Generator 

Domain 
Modeling 

Environment 

Domain 
Model in 

XML  

Meta-model Domain Model 

Legend: 
 
 
    
 
   GME Tool             Human Activity in            GME Tool Output 
                                       GME Tool           



109 

A GME Meta-model is defined as a project, that has a set of folders to help 

organize complex models.  Folders contain models, which are composed of other models, 

atoms, references, connections and sets.  Models, atoms, references, connections and sets 

are all GME “First Class Objects” (FCO). The number and kind of FCOs that are allowed 

in a model is determined by the modeling paradigm under construction and is defined by 

a containment connection. Contained objects can also be defined with an inheritance 

relationship.  Atoms are elementary objects; they represent the lowest-level element of a 

model hierarchy.  GME objects have attributes associated with the basic concept, such as 

role, name and kind.  GME has a facility where additional attributes can be defined 

during Meta-modeling.  The attributes that can be associated with an object include field 

(text, integer and double), Boolean and enumerated.  If the attributes defined are 

associated with the parent object in an inheritance hierarchy, then the sub-objects inherit 

those attributes.  

Relationships are modeled by creating a connection between two objects;  These 

connections may be defined as directional or bi-directional.  Two objects must have the 

same parent and be visible within the same aspect. Several kinds of connections can be 

defined in a single paradigm.  The connections determine which objects can participate in 

a particular relationship, and connections can have attributes and cardinality.  If it 

becomes necessary to associate objects in different parts of the model hierarchy, GME 

provides a Reference object that can be used exactly as other GME FCO.  Any FCO 

except a connection may be referred to by a Reference. 

GME models are similar to classes in Java.  They can be sub-typed and 

instantiated as many times as needed.  In order to promote reuse and simplify model 

maintenance, designers restrict changes that propagate down in the model. Attribute 

values of model instances can be changes, but no parts can be added or deleted. Sub-

typed models may have new parts added, but parts from the parent model cannot be 

deleted.   

GME’s Meta-modeling paradigm is based on the Unified Modeling Language 

(UML).  Syntactic definitions are modeled using UML class diagrams, while semantics 

are specified using the Object Constraint Language (OCL).  



110 

4. Building the Meta-model 

The scenario chosen for this experiment is relatively simple, but very common.  It 

was chosen to demonstrate how this approach could satisfy real-world concerns and 

exercise concepts, yet be readily understandable.  In this model, researchers are 

configuring a robot composed of “RoboticSystems.”  The modeling environment is 

started by launching GME, and selecting the built in metaGME paradigm from the 

paradigm menu. Figure 34 shows the initial GME modeling screen with an abstract class 

“RoboticSystem” and several allowable sub-classes. These sub-classes are represented as 

Models, which means they are also container objects and will be composed of additional 

objects. The sub-classes are attached to the abstract base class by a triangle that is used to 

represent inheritance in GME’s graphical modeling environment.  

 

 
Figure 34. GME Screen Shot of Top Level Classes in the Meta-modeling 

Environment 

 



111 

The sub-classes included in this model are: 

− OCU – Operator Control Unit.  This can be any number of OCU’s and the final 

model may include multiple OCU’s if necessary, e.g., one for the mobility 

platform and one for the manipulator. 

− Platform – This is a robotic mobility platform, or even possibly a simulation of a 

mobility platform. 

− Manipulator – Self-explanatory, a gripper, multiple degree of freedom arm or 

some new concept to interact with the environment. 

− Control – A control is usually a block of software.  It may be embedded in a 

microcontroller.  Researchers may be experimenting with a new control, or they 

may have a necessary control that is not integral to one of the other systems in the 

model. 

− Sensor – Sensors come in two overlapping flavors, Mission Packages and 

environment sensors.  An example of a pure environment sensor might be a bump 

stop.  A vision system on the other hand, might overlap: it could be used to 

operate the mobility platform, as well as perform a mission function, such as 

facial recognition. A pure mission sensor might be a chemical detector. 

 



112 

 
Figure 35. GME Screen Shot Showing Software Engineer Adding Attributes to 

Classes 

 

The next step is to switch to the attributes view (Figure 35) and define attributes 

for the classes.  In the Attributes view, modelers annotate the graphical model with 

information that augments the graphical model.  As can be seen, the attributes show up as 

types in the attributes screen and appear in the lower box of the class diagram. The 

PlatformType attribute is added to the platform in Figure 35.  This is an enumerated type 

used to restrict the Platform. The modeler can use one of the supported types, in this case, 

ODIS, CHAOS or PIONEER. 

 



113 

 
Figure 36. GME Screen Shot after Software Engineer Added Messages and Top 

Level Container 
 

In Figure 36 the modelers add a top-level container, ModelDiagram to hold all 

the model objects and a Connection.  Connections express a relationship to associate 

different objects in the model.  In this case, the relationship is message-passing between 

two objects. Note that connections may also have attributes associated with them.  The 

message is associated with the abstract object, which shows that RoboticSystem objects 

can pass messages to other robotic systems.  The sub-classes inherit this relationship and 

are allowed to connect message-passing streams between each other.  Modeling in this 

way makes for a cleaner diagram, but also sets up the possibility for a domain modeler to 

create a message-passing connection from an object to itself.  In the context of this model, 

that construct makes no sense, so the modelers are not too worried about it.  The 

alternative is to model explicitly connections between the different sub-classes.     



114 

 
Figure 37. GME Screen Shot of Adding an Explicit Constraint to the Meta-

model  

 

As mentioned at the beginning of this section, the scenario being modeled calls 

for one and only one output message stream from each object. This may be somewhat 

restrictive in production, but at the early prototyping stage, it is acceptable and useful.  It 

also makes for a more understandable example.  Figure 37 is a capture of the constraint 

aspect screen of GME.  A constraint is added to the model to prevent the domain modeler 

from performing an operation that is not allowed by the paradigm being defined in this 

Meta-model.   If a domain modeler attempts to create more than one source message 

connection from a given object, GME pops up a message screen disallowing the 

operation and explaining why.   As can be seen, Constraints have attributes as well as a 

defining equation. 

In Figure 38, the modeler completes the Meta-model by adding a collection of 

atomic elements. The atomic elements ultimately compose the individual nodes (OCU, 



115 

Platform, etc.) of the system. It is very similar to the structure of the higher-level classes.  

ArtifactComponents is an abstract class and the leaf classes inherit connections from it.  

Two significant differences are that the sub-classes are all atoms, self-contained objects 

and there are no constraints associated with the Connection item.  Note there is a variety 

of ways this could be modeled.  For instance, Adaptor objects could have been modeled 

as an inheritance hierarchy.  If the adaptor sub-classes had different attributes, this would 

have been the way to go.  However, since they do not in this case, modelers simply add 

an enumerated attribute to the Adaptor class to select which adaptor they plan to use. 

 

Figure 38. GME Screen Shot of a Complete Meta-Model for a Basic Robot 

 

After completing the Meta-model, they need to prepare a new paradigm for use by 

the domain engineers.  Fortunately, GME does this for the developers.  On the top of the 

GME workspace is a toolbar with a small gear-like icon, the MetaGME Interpreter. 

Selecting this icon causes the environment to prompt the user to save the current 



116 

paradigm as an XML file, and then prompts the user to register the paradigm.  Once the 

paradigm is registered, it is available for use in domain modeling.  GME automatically 

save the current workspace when a project is closed, unless specifically requested to abort. 

D. DOMAIN MODELING    

1. Introduction to the Model 

In this section, we build and discuss a domain-specific model-based on the 

paradigm, experiment-meta, created in section VIII.C.4.  The model we are creating is 

simple, yet plausible.  Designers have a tele-operated robot, ODIS.  They would like to 

add some semi-autonomous features to assist the operator.  The concern is the robot 

bumping into things and either damaging itself due to impact, damaging the objects it 

bumps into or creating a safety hazard by bumping into pedestrians.  Conceptually, they 

know this is a feasible scenario, and realistically need to operate the robot to prove that it 

will work.  Many things can go wrong with the physical system.  What size speed bumps 

will be detected as obstacles?  Are there situations where the robot will not be able to 

recover from detecting an obstacle and need to be manually retrieved?  Can adjusting the 

physical mounting of sensors overcome problems? 

Researchers initiate this experiment with four artifacts: 

− ODIS robot. 

− ODIS OCU. 

− Sonar Data. 

− Control Algorithm. 

They have an ODIS robot and an ODIS Operator Control Unit (OCU).  The robot 

and OCU communicate via a set of proprietary serial packets, over an RF serial link.  

Both of these items use microcontrollers; researchers cannot alter the code on the 

microcontrollers, which they have examined and determined the serial packet structure of. 

There is a sonar array, and a “sonar data collection system” developed as part a 

previous project with a local University [58].  The data collection system is i586 based, 



117 

but designers do not have access to the operating system or the code.  The sonar data 

board has a serial output with a published protocol. 

An engineering staff specializes in control algorithms.  Given a set of inputs, they 

will deliver a working prototype of the algorithm in a format of their choice that they 

only develop on a supercomputer array accessible via DREN.  The robotic engineer’s job 

is to analyze the situation, rapidly create a prototype and examine potential solutions, 

report on feasibility and, if feasible, initiate a development spiral to implement the 

solution. 

 

Figure 39. Hardware Block Diagram for Prototyping Environment 
Instantiation, Elements Include Legacy Artifacts Helper Computers and Network 

Environments 

 
 The hardware solution involves all the artifacts listed above, and a set of helper 

devices (most likely old laptops or PC 104 stacks) to adapt the artifacts to the prototyping 

environment.  Figure 39 represents a possible hardware configuration. Depending on 

ODIS 

Sonar 
Data 

ODIS 
OCU 

Control On 
Super-Computer DREN Ethernet Sonar Serial 

ODIS Serial  Odis Serial 

802.11 

Legend 

Artifact Helper 

 
 
Legacy 
Protocol 
Message 

JAUS 
Message 



118 

access to the computing elements of legacy devices, the number of helper devices may be 

reduced by running helper node software on legacy devices, or running multiple helper 

nodes on a single helper device. The domain model output will be the basis to 

generate/compose the Java codes needed to complete all connections.  

2. Configuring a Domain Model 

 
Figure 40. GME Screen Shot as Domain Engineer Initiates a Domain Model by 

Selecting the Basic_Robot Paradigm Defined During Meta-modeling 

 

Domain modeling begins by creating a new GME project and selecting the 

appropriate paradigm.  The GME distribution contains four paradigms, each time a new 

Meta-modeling project is created a new paradigm is generated at completion.  As a Meta-

model is evolved, it can replace the current version, or the project can be copied to 

increment the paradigm version. For this experiment, researchers select Experiment_meta, 

created in the previous section (Figure 40). 



119 

Selecting the paradigm creates a blank workspace with a root node.  To begin 

domain modeling, designers must select the root node and right click to get a context 

menu, then select “Insert Model.”  The only choice is “Model Diagram” (Figure 41) 

which is the top-level model container diagram created in the Meta-modeling process  

 
Figure 41. GME Screen Shot as Domain Engineer Creates a New Model using 

the Basic Robot Paradigm 

 

The result is a new workspace to begin top level modeling of the domain (Figure 

42). 

 



120 

 
Figure 42. GME Screen Shot of an Initialized Top Level Domain Workspace; 

note the Domain-specific Icons for Legacy Artifacts 

 

You will notice that in addition to the blank workspace, a set of domain-specific 

icons appears in the aspect window, labeled  Control, Manipulator, OCU, Platform and 

(not visible) Sensor.  Domain engineers drag icons from the aspect window to the 

workspace that represents the artifacts they wish to model.  

The icons have attributes associated with them, both static attributes from the 

meta-Meta-model and configurable aspects the software engineer added as aspects during 

Meta-modeling.  The static aspects include items such as the display name, which can be 

changed during domain modeling and other items, such as kind and role, which are fixed 

at meta-modeling time by the GME environment. Other items modifiable at Meta-

modeling time, such as attributes, help define the target domain paradigm, while still 

other items, such as icon name and color, help define the look and feel of the models. 

 



121 

 
Figure 43. GME Screen Shot as Domain Engineer Selects Artifacts for the 

Domain Model 

 

Examining the attributes views in Figure 43 and Figure 44 shows how some 

different decisions at Meta-modeling time show up in the domain model.  (It also shows 

how GME windows can be undocked).  In Figure 43 the second line in the attributes 

window is a string attribute the domain engineer needs to fill in to fix the exact OCU that 

will be used in the subsequent code composition/generation.  In Figure 45 the user has 

configured the attribute, in this case “Sensor Name” to Sonar.  Notice also in Figure 45 

that the name below the sensor icon has not changed.  The “SensorName” attribute is a 

different element from the name attribute associated with the sensor element in the GME 

model.  Also, note that the domain modeler has begun to customize the names on the top-

level diagram by renaming the Platform icon to “ODIS.” 



122 

 
Figure 44. GME Screen Shot as Domain Engineer Selects Artifact Enumerated 

Attributes 

 

The above discussion of the aspects of a model shows how Meta-modeling 

decisions affect the domain model.  In the case of including a string variable, the domain 

model becomes very flexible.  New components can be added at any time and the same 

paradigm can be used.  In the case of using an enumerated aspect, the domain model is 

restricted to exactly the components a Meta-modeler allows.  Which case to use is a 

matter of philosophy and the sophistication of the domain modeler.  A hybrid case could 

be included to have an enumerated attribute along with a string attribute, that when filled 

in overrides the enumerated attribute. 



123 

 
Figure 45. GME Screen Shot as Domain Engineer Inserts an Artifact Text 

Attribute 

 

Additional concerns for Meta-modelers arise when they attempt to create rules to 

compose/generate the codes.  In the Meta-model, of the top-level models, OCU, Platform, 

Sensor, Manipulator and Control inherit from a base class.  Each of these models has an 

independent attribute to define which legacy item we are planning to include. This is of 

course necessary for enumerated items, but notice also that the attribute names are all 

unique: OCUID, PlatformType, SensorName, ManipulatorType and ControlID 

respectively.  Again, at rule creation time, a common name, such as ItemID, will simplify 

the rule set needed to interpret the domain model. 

Figure 46 shows an essentially complete top-level model.  Essentially, there is a 

dataflow model or cooperating set of state machines, between the icons.  The various 

legacy items are connected via a set of legal connection arrows that can transmit one or 

more message types, ideally any legal message in the message set.  Since this is a 

prototyping environment, the case may be that some nodes may transmit messages that 



124 

are not used by connected nodes.  What happens then is controlled by the receiving node, 

and may be one of the reasons the prototype was constructed in the first place.   

 

 
Figure 46. GME Screen Shot as Domain Engineer Configures Message Passing 

 

Returning to the model in Figure 46, the team has a prototype to examine using 

sonar for bump stop control.  The “BumpControl” may be a simplistic algorithm that 

simply stops the robot when it is triggered, in which case researchers will probably 

determine quickly that they have a problem when they have to go down range and shove 

the robot away from the obstacle.  In another case, the “BumpControl” may be a 

sophisticated non-deterministic algorithm, perhaps based on a neural network, where they 

want to exercise the scenario in a relevant environment to be reasonably sure it will not 

be stuck in actual operations.  They can also recreate the model by changing out the robot 

to see if the control algorithm works with different types of mobility platforms. 



125 

The last illustration on the top-level model is what happens when we encounter a 

constraint.  In the Meta-model, the software engineer imposed the constraint that no node 

in the domain model would be able to be the source of more than one message stream.  

Figure 47 shows a pop-up message in the GME environment informing the domain 

modeler that attempting to source a second message stream from the OCU is a constraint 

violation.  The modeler simply selects the only real choice, abort and is able to continue 

work.  When the case is that the domain expert absolutely needs to have a node source 

two or more message streams, he will have to go back to the Meta-modeling team and 

have them create a new paradigm for this new case.  Like fine wine, computer models 

come in distinct varieties and improve with age.  Eventually, there will be a collection of 

well-defined paradigms covering several distinct cases, as well as a collection of ever- 

improving versions of a model. 

The top-level model gives, obviously, a top-level view.  Usually, researchers build 

prototypes because they are more interested in what is going on behind the scenes.  They 

want to observe physical as well as hidden aspects that may be associated with the 

underlying messaging software, and to be able to change certain aspects, such as 

bandwidth, or be able to introduce faults.  They want to include legacy items with a 

variety of protocols, and to be able to include emerging communications protocols as 

well as emerging communications devices.  For that, they use lower-level models where 

the actual mechanics of the prototype are configured.  In this example, the lower-level 

models are composed of atomic parts to simplify the discussion. For instance, the 

optional component is really a placeholder; in future instantiations of this paradigm, the 

team envisions that at least the optional component will become a model; it will have 

sub-components that will essentially define a mini-graphical programming environment. 



126 

 
Figure 47. GME Screen Shot as Domain Engineer Attempts an Illegal 

Connection as Defined by Meta-model Constraint  

 

Figure 48 shows a domain model with two sub-models open.  The 

“BumpControl” model window is active and attributes for the “BumpControlAdaptor” 

are visible in the attributes window.  The Meta-model is constructed such that the 

paradigm has a common set of component atoms for each artifact that can be included in 

the top-level model.  This means the domain modeler will see the same set of parts in the 

aspect window (lower left) for any top-level model icon that is opened.   The “ODIS” 

sub-model window is also open, and we can see the domain modeler picked and 

connected a different set of parts to compose that model. 

In the “BumpControl” window, the modeler has defined an incoming serial 

connection, a bi-directional UDP connection, a “BumpControlAdaptor” and an optional 

component in the outbound data stream.  For simplicity, he created this sub-model 

without constraints and without explicit connections to the connections in the top-level 



127 

model.  This could lead to ambiguities if the domain modeler has no idea what they are 

doing, so future production versions of the Meta-model will use additional GME 

concepts to make the model much more robust at domain modeling time. 

 
Figure 48. GME Screen Shot as Domain Engineer adds Adaptor, 

Communications and Optional Software Components that Configure the Artifact 
Wrappers 

 

The actual adaptor that will be used can be determined by the “TypeID” of the 

parent model, the name of the adaptor, or from an adaptor artifact: again this is a Meta-

modeling concern and should be addressed by the modeling organization’s Standard 

Operating Procedures.  The optional components have considerable potential to expand 

the capabilities of these tools, especially since models can be copied and saved for reuse 

in this and other  domain models. 

The other two artifacts, “ODISOCU” and “Sonar” are configured as above.  When 

all the artifacts’ sub-models are configured, the model is saved and is ready for use.  To 



128 

use the model to generate/compose code, it is next exported to an XML format file. The 

saved GME model can also be edited to create a new instance. 

3. The XML Output from the Domain Model 

The completed domain model is saved in XML format for portability. This 

domain model XML output is the next area of concern for the software engineer.  The 

software engineer creates a set of rules to parse the output, which will allow additional 

rules to move files, setup the run-time environment and generate top-level code.  This is 

done once, after creating a representative domain model.  A properly constructed rule set 

will correctly interpret any domain model created from the Meta-model’s paradigm.  

GME generates an XML file with an .xme extension to indicate that the XML is domain 

model output. A sample domain model XML output file, “Basic_Robot_Domain.xme”*, 

is available in Appendix C.3.b.  This file is used for the remainder of this chapter.   

An XML document is a collection of elements.  Elements are generally denoted 

by a start tag with an identifier string in angle brackets , and an end tag in angle brackets 

with the same identifier string followed immediately by a “/,” or in the case of empty 

element, a single tag in angle brackets with the slash before the closing bracket.  Table 3 

illustrates the basic ways an XML document element is constructed.   

Note the different ways an element can convey information: 

− An empty tag can be a place marker in the XML, or convey that some piece of 

information is missing, i.e., <author/> might mean that the next group of tags is 

about the author, or that the author did not fill in the field in the generating 

application. 

− Information related to a tag’s attributes is enclosed in double quotes. 

− Textual information enclosed in tags is not quoted; if it is quoted, the quotes are 

part of the text string. 

 

                                                 
* The naming of the files used is somewhat arbitrary, however, file extensions are defined by the GME 

environment. 



129 

Description Example 

Empty XML Tag <element/> 

Simple XML Tag with 

text 

<element> 

   This is an XML Element. 

</element> 

Empty XML Tag with 

attributes  

 <element name = “value” type  = “value2” /> 

 

Simple XML Tag with  

text and attributes 

<element name = “value” type  = “value2”> 

   This is an XML Element. 

</element> 

Mixed XML Tag with 

text, attributes and 

inner element. 

<element name = “value” type  = “value2”> 

   This is an XML Element. 

    <element2 name = “value3”> 

         This is the text in XML element2 

</element> 

Table 3. Basic XML Tag Concept for Rule Creation 

 
The output XML file, Basic_Robot_Domain.xme is derived from the paradigm, 

Basic_Robot_Meta, which defines an allowable structure for combination of features in a 

Domain model (Figure 49).  The Meta-model adds additional semantic information, 

attributes, and syntactic information, constraints, to the feature model.  It follows that 

since the paradigm for the creation of the Domain model is based on a particular feature 

model, the result will be a domain model conforming to the original feature model.  Thus, 

the high-level feature model carries through the process from Meta-modeling, through 

domain modeling to rule creation for composing/generating the run-time environment.  

This is a systems engineering process to enhance and define a series of models and 

artifacts by structured transformation from a requirement, to a feature model, formally 

modeled in UML, to a fully executable prototype composed of previously incompatible 

hardware and software artifacts. 



130 

 

Figure 49. The “Basic_Robot” Feature Model in UML, Showing the Three 
Levels of the Model and the Cardinality of the Elements 

 

4. Translation 

a. Introduction  

 At every step, the prototyping environment is working with a 

representation of the basic feature model that spawned the paradigm.  At every step, the 

user are manipulates the representation into a format that is best suited to the task. During 

translation, a set of Ruby coded rules use XPath extensions to Ruby to extract the 

information in the XML output of the domain model into a set of Ruby data structures.  

The Ruby rules are arraigned to parse the XML data and construct arrays and hash tables 

corresponding to the feature model.  The final set of data structures constitutes a set of 

related knowledge.   

b. Frame-Based Knowledge 

The feature-model-based paradigm separates knowledge about the system 

into chunks of information.  During parsing, related information; is stored together, in 

Root 

Level one 

Level two 



131 

chunks.  A frame is a model for a chunk of related information.  A frame is divided into 

slots and each slot contains an element of the instance of the feature. The information in a 

slot may be instantiated directly during parsing or derived from other information by 

running a procedure (or firing a rule). Prior to instantiating derived information, the slot 

is associated with a procedure. A set of frames stores the knowledge defined in the 

system in a readily manipulated format. [59]   Frames exhibit polymorphic behavior by 

collecting appropriate information, i.e., communications parameter frames will have 

common slots and specialized slots depending on the type of communication they 

represent. 

Table 4 through Table 7 show the frames represented in hash table within 

the Ruby arrays created from the domain model XML output as well as cross references 

between object id’s.  Human understandable text names make the data structures more 

user friendly.  For instance, the GME connections in the XML output only have the 

object ids of objects with which they are associated.  Designers have written rules to 

search artifacts and component frames for their object ids and then written the 

corresponding object name to the associated communication frame.  Table 4 is a 

rendering of an artifact frame.  All slots except comms_destination are directly associated 

with a model element in the GME domain model.  One can derive comms_destination by 

searching channel frames for a channel with a source at the artifact associated with this 

frame, reading the destination id from the channel’s destination slot, then searching other 

artifact frames for the corresponding id, and then finally filling in the comms_destination 

slot with the data in the found frame’s name slot. 

 

name User Input in Domain Model 
id GME Defined 
comms_destination Derived 
messages_in User Input in Domain Model 
messages_out User Input in Domain Model 

Table 4. Artifact Frame 



132 

Table 5 and Table 6 represent communications frames.  They have no 

name of their own because the GME Meta-model, Basic_Robot_Meta does not use 

names for connection. * 

destination_name Derived 
destination GME Defined 
source_name Derived 
source GME Defined 

Table 5. Channel Frame 

  
destination_name Derived 
destination GME Defined 
destination_kind Derived 
source_name Derived 
source GME Defined 
source_kind GME Defined 

Table 6. Dataflow Frame 

 

Table 7 is a representation of a component frame.  The component frames 

are composed of different slots based on the value associated with the kind of slot.  The 

top three slots in each frame are the same, and could be considered a base.  Alternative 

data structures are necessary because engineers modeled the components as a group of 

classes inheriting from a base class.  It makes sense that there can be many different 

extensions of the base class by derived classes. 

 

                                                 
* GME has the capability but assigning identifiers to connections or not is a modeling decision. 



133 

 
name User Input in Domain Model 
kind Adaptor – Defined in Meta-model 
id GME Defined  

Or 
name User Input in Domain Model 
kind TCPCommunications – Defined in Meta-

model 
id GME Defined 
Port User Input in Domain Model 
IPAddress User Input in Domain Model 
destinationIPport Derived 
destinationIPaddress Derived  

Or 
name UserInput in Domain Model 
kind SerialCommunications – Defined in Meta-

model 
id GME Defined 
serialport User Input in Domain Model 
serialspeed User Input in Domain Model  

Table 7. Component Frames 

 

c. Rule-base Program Discussion  

  Feature models are essentially a hierarchy of data items.  This suggests a 

hierarchy of frames, discussed above, and rules. Rules are well suited for hierarchical 

description and manipulation of declarative knowledge.  Software engineers transform 

declarative knowledge into a production rule by writing the knowledge in the form of a 

pattern and an action. Rules may call other rules.   

 One may ask, why choose a rule-based translation over a procedural 

translation of the graphical domain model?  The answer relates to the fact, mentioned in 

the discussion of Feature Modeling, that there is a grammar associated with a feature 

model.  This grammar suggests generic production rules to process a feature model.  The 

grammar for a feature model specializes to specific instances of a feature model, i.e., 

domain models.  Each specialization may spawn a family of domain-model grammars, 

with many common attributes and productions.  



134 

Rules are, by nature, highly uncoupled. A rule can have multiple results 

depending on the artifact that the rule operates on.  The software engineer takes 

advantage of the nature of rules when creating a set of outcomes for the associated 

aspects of a feature model. 

Rule languages are domain-specific, extensible, and high-level.  This 

allows directly reusing higher-level rules as parts of the lower-level parts domain model 

change.  Rules capture the semantics of the Meta-model, as well as the semantics of the 

domain model.  Software engineers version previously created rules along with the Meta-

model.  

The ability to reuse directly or modify rules contributes greatly to the 

minimization of turnaround time for producing new or new versions of prototypes.  In 

many cases, the software engineer that created the original rule set will still be available, 

but not always.  In either case, the software engineer, working on the revision has a 

baseline.   

d. Ruby 

The link with the most subjective variability in this effort was the choice 

of a language to translate the domain model into an executable application.   A high-level 

language was paramount.  Prolog and Lisp stood out as languages with artificial 

intelligence roots to address rule bases.   Perl and Python are scripting languages with 

needed XML support. All are portable, but different instantiations are not freely available 

for a wide variety of platforms. 

While any of the above languages might have been used, TARDEC 

designers ultimately chose to use Ruby.  Ruby is a freely available, portable language 

with a large open source community background.  It is object-oriented, which makes it 

suitable for creating reusable, polymorphic objects needed to interpret and translate 

feature models expressed as GME domain models.  Ruby is a loosely-typed language, 

which allows for simple translation from XML representations of domain models into 

frames internally represented as a collection of arrays and hash tables. 



135 

Ruby has required support for other necessary elements of the prototyping 

environment; REXML extensions provide XPath and XPointer support. Ruby supports 

regular expressions as a language feature.  Ruby is open source.  It has a large contributor 

community via Ruby Gems. Ruby Gems are another possible way to share Ruby rules 

created via this project. 

E. RESULTS 

This experiment exercises the research objectives from concept inception through 

executable java code.  The experimental implementation begins with a software 

engineer’s, in cooperation with a domain engineer, realization of a Meta-model for the 

proposed series of experiments using the GME tool. A  GME function transforms the 

Meta-model is into a domain model.   

During creation of the Meta-model, the software engineer queries the component 

repository to insure that the appropriate components are available in the repository.  

Missing or out of date components initiate a programming effort to create or maintain 

needed components as necessary.   

The software engineer creates a set of rules that will translate any instance of the 

domain model into a set of executable programs necessary to operate a prototype. The 

rules also collect and compile documentation and instructions necessary to operate the 

aggregate prototype. 

A UML depiction of activities associated with Meta-modeling in Figure 50 

shows the various actors, programs and data stores necessary to generate a domain model. 



136 

 

Figure 50. Activity Diagram Showing Meta-modeling and Associated Efforts 
Necessary to Create a Domain Model 

A domain engineer creates a domain model, an instance of the Meta-model in 

GME.  GME outputs the domain model to an XML output file.  The domain engineer 

initiates the translation rule program that composes and generates Java code and an 

“operator’s manual” necessary to run the prototype. 

A UML depiction of activities associated with domain modeling in Figure 51 

shows actors, programs and data stores necessary to produce software needed operate a 

prototype. 

 



137 

 

Figure 51. Activity Diagram Showing Domain Modeling and Associated Efforts 
Necessary to Create a Final Product 

 

 



138 

1. Software Engineering  

The Generic Modeling Environment is a well-documented tool.  It comes with a 

detailed user manual as well as a comprehensive set of tutorials and examples. 

Developing the “Basic_Robot_Meta” Meta-model was integral to this effort.  Developing 

this model included gaining experience with GME via the tutorials, as well as several 

trial Meta-models. Approximately six iterations of the Meta-model contributed to an 

understanding of the necessary components and attributes that appear in the Basic_Robot 

GME paradigm.  Creating the final paradigm used in this experiment was about a one-

week part time effort. 

After a Meta-model is complete, the software engineer creates a rule set to 

interpret instantiations of the resulting domain model.  In this effort, creating the initial 

rule set was a two-part effort.  The first part was establishing appropriate rules.  The 

second part was coding these rules in Ruby.  Both these effort took place over a period of 

about one year, interactively.  This effort required creating several rule sets to correspond 

to the progression of Meta-models. The “Basic_Robot” rule set contains sixteen rules.  

Some of these rules are very similar to rules in the first rule set.  Others appear only in the 

final set of rules.  Creating rule sets is a function of experience and the size of the Meta-

model. Larger Meta-models, with deeper tree structures, will require additional rules; 

however, the information extraction rules will be similar at each level.  This indicates that 

the time required to create a rule set is not a linear function of the size of the Meta-model. 

2. Coding Efforts 

The main thrust of this effort is to reduce the time it takes to create a prototype 

system; in particular, the software needed to establish a federate of legacy hardware and 

software artifacts.  Technicians and users then exercise the federate in a test environment 

as needed.   

It was a several month, part time, effort to create the initial set of software 

components needed to exercise the system. Counting the hours involved exactly, proved 

somewhat difficult due to the multitasking nature of the work in the Robotics Lab.  

Observations of work levels indicate that there is at least forty man-hours associated with 



139 

creating first two adaptors. Creating the UDPCommunications component was about a 

twenty-man-hour effort and creating the optional component was about a ten-man-hour 

effort.   

The first two adaptors interface to two legacy simulation items, a simulation of 

the ODIS robot and a simulation of an Operator Control Unit (OCU).  Originally, these 

two artifacts ran together on a single computer, communicating over the localhost address, 

127.0.0.1.  The two artifacts communicate using messaging packets designed in an ad hoc 

fashion, but influenced by the ODIS robot messaging packet scheme.  The two adaptors 

allow the simulation and OCU to be run on different machines and allow insertion of 

instrumentation in the messaging stream.  The adaptors convert the legacy packet format 

to and from XML JAUS messages. The communications components convert the XML 

JAUS messages to binary JAUS messages for transmission.  The messaging code to 

convert between JAUS formats and from JAUS XML to legacy format is from the Naval 

Postgraduate School’s Autonomous Underwater Vehicle (AUV) Workbench code 

distribution [60] written by D. Davis and used unmodified. 

The adaptor components are about 400 lines of code each, the simple optional 

component is about 100 lines of code and the UDP communications component is about 

400 lines of code.  Components once created once are reused in multiple domain 

instantiations.  The Ruby rule set is about 500 lines of code and is highly reusable, not 

only in its current application, but individual rules are also reusable for future rule sets. 

3. Creating and Operating a Prototype System 

The time it took it create the communications, adaptors and optional components 

and get the first test case running is representative of the previous ad hoc methodology 

for creating prototypes.  If new team members come on board, the software may not be 

available, or if it is, not understandable.  This is particularly true when the replacements 

are not software centric. 

To test the environment, TARDEC engineers took the components for the first 

prototype implemented, the simulation artifacts, placed them in the component repository, 

and created a Meta-model that incorporates them as elements. 



140 

Two Interns participated in the second phase of the experiment. One is a computer 

scientist with two years experience in the Robotics Lab.  The other is a mechanical 

engineer with two weeks experience.  Both attended a 45-minute briefing on the purpose 

and scope of the prototyping environment, including Meta-modeling, domain modeling, 

an overview of the rule set and instructions on how to generate a set of wrappers.   

For the experiment, the two Interns used two computers. The first computer ran 

the GME program, Ruby and the Component Repository, as well as the OCU simulation.  

The second computer ran the robot simulation. The first to use the environment, the 

computer scientist, took 25 minutes to get the simulation operational on two computers.  

The second completed a very similar task in 20 minutes.  Note that the participant played 

the roles of both domain engineer and technician. 

This effort is representative of the potential time and effort savings. The 

TARDEC Robotics lab intends to use these same simulations, along with control artifacts 

and physical OCU artifacts to examine behavioral control algorithms.  Programmers in 

the TARDEC Robotics lab are creating adaptors for low-cost hand held game controllers. 

Programmers are also creating adaptors for sensors and behavior controls to examine the 

feasibility of orbiting an omni-directional drive vehicle within six inches of a stationary 

object, marinating a predefined relationship normal to the surface of the stationary object. 

F. EXPERIMENT CONCLUSION 

This approach will reduce time and effort needed for hardware software 

prototyping by reducing rework.  Adaptors for legacy systems will be stored in the 

component repository.  Highly reusable components, such as instrumentation and 

communications will eliminate time-consuming recoding (often by inexperienced 

personnel).   

The process taken by this effort generates work products at each step of the 

process.  The process generates Meta-models, domain models and corresponding rule sets. 

These process documents will feed forward into production efforts. Production engineers 

will have solid documentation of assumption and constraints used in prototype efforts. 



141 

These documents are usually not readily available today. Coupled with test reports, they 

will have a better understanding of issues and requirements.  

This process in not currently used at TARDEC, due to the immaturity of the 

component repository.  An effort to add adaptor components for each of the platforms in 

the TARDEC Robotics Lab inventory is under way.  Lab engineers are assembling 

several stand-alone sensor packages, including an Inertial Navigation System (INS), a 

scanning LIDAR range sensor and a sonar array; adaptor components will follow.   A 

new project focusing on current operations is in the planning stages. New sensor and 

mobility platforms will be entering the inventory.  TARDEC plans to include this process 

during concept and sensor evaluation. 

 

 

 

 



142 

THIS PAGE INTENTIONALLY LEFT BLANK 



143 

IX. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

This work provides framework for a systems engineering approach to prototyping 

robotic systems.  It provides tools to an interdisciplinary team, to create a set of work 

products necessary to create an executable prototype robotic system.  The Meta-model 

work product is directly applicable as an input to a production systems engineering effort.   

There are immediate and compelling reasons to invest effort into prototype efforts 

for robotic systems.  There are current needs that are addressable by technology that 

approaches a viable Technology Readiness Level (TRL).  Understanding of operational 

and logistical issues is paramount to developing technology to operationally acceptable 

TRL. 

This work takes a graphical, model-driven approach.  The work defines a chain of 

responsibilities to take advantage of expertise from different technical fields.  The actors 

in the chain generate a set of reusable models, components, rules and documentation.  

B. RECOMMENDATIONS FOR FUTURE WORK 

1. Introduction 

The next step is implementation of the design environment for prototyping a 

series of robotic systems in the TARDEC Robotics System Integration Laboratory (SIL).  

In-house researchers will begin with simple models, robot simulations and very coarse-

grained components; the simple models presented earlier will be realized.  Continuing, 

the Meta-models will be refined to include lower level component composition.  A set of 

robotic artifacts (platforms, controls, OCUs etc.) will have their interfaces wrapped to 

conform to the JAUS standard. TARDEC research engineers will create a collection of 

instrumentation components, as well as several different communications components - 

UDP/IP, TCP/IP and serial to begin with. 

As the team grows more confident with the Meta-models and domain-specific models, 

additional artifacts such as mission packages and manipulators will be included both in 



144 

simulation and physically. This work provides a framework for prototyping robotic 

systems.  There continue, however, to be open-ended concerns to be addressed, at least 

initially by the TARDEC Intelligent Ground Systems Lab. 

2. Component Repository 

A robust component repository is a prerequisite to this effort.  Initial efforts will 

focus on Java components.  New artifacts require new adaptor components, and new 

communications protocols require supporting communications components. Revisions to 

the messaging protocols will also require new versions of message objects. 

A new version of a messaging protocol will trigger a maintenance event.  

Incorporation of the new message class potentially requires versioning of adaptor 

components. Inspection of adaptor components is necessary to determine if a versioned 

message affects a particular component. 

Maintaining the component repository is an open-ended effort. As time goes on a 

series of versions of components will emerge. Developing cataloging schemes to keep 

track of what versions of the components are compatible is an interesting research topic.  

Methods to search the component repository “intelligently” are another potential research 

topic. 

In addition, there is no reason that components based on other languages could 

not be included in the future.  Rules to deal with conflicts and precedence are necessary, 

assuming components with different language roots, but the same functions appear in the 

component repository.   

This effort will support at a minimum, team efforts.  Team efforts imply shared 

repositories. An in-house effort has relatively simple requirements, perhaps a mutual file 

server.  Including outside interests requires networked distributions.  The situation is not 

complex as long as the data flow is outward bound.  It becomes more complex with 

community support, but still reasonable.  Of course, if proprietary components or 

intellectual property is involved, the situation becomes more complex.   



145 

Database support addresses many concerns when multiple levels of access are 

required.  Database support also imposes administrative requirements, as well as security 

concerns, hosting requirements and database middleware support.  Determining these 

requirements and suggesting solutions may also be a research topic. 

3. Model Collections  

Completed models are a product of this process.  Meta-models define 

architectures, and domain models define instances of a Meta-model.  To facilitate future 

model reuse, researchers should consider a searchable model repository. 

In a relational repository, domain models are children of the Meta-model that 

generated them. Versions of similar Meta-models are children of an abstract parent Meta-

model. Abstract Meta-models are themselves children of a root element.  

Each model element should have auxiliary information associated with it.  Meta-

models might have requirements documents.  Domain models might have sets of physical 

test results. Each Meta-model should have, at a minimum, a pointer to its associated rule 

set. 

4. Rules  

Rules extract information from the domain model and compose sets of code. In 

the experimental implementation, the rules are straightforward.  Software engineers hand-

assemble a relatively small set of declarative rules.  Other than specifying the location of 

the XML file containing the domain model output, the rules are not interactive.   

Rules, however, can be interactive.  In the experiment rule set, there is a rule to 

check serial port compatibility.  The rule only determines if the ports configured in the 

domain modeling process are compatible and outputs an appropriate message.  A design 

decision may allow an additional rule that prompts the user for corrected information 

when the ports are incompatible.   

The experiment rule set suggests that raising the level of abstraction of the rule set 

to a domain-specific rule language is a distinct possibility. Iteration rules have similar 



146 

structure as do code generation and composition rules.  Parameterized versions of these 

rules may simplify rule creation. 

The frame-based nature of the data generated during domain modeling suggests 

using frame based expert system paradigms. Previous work in the Ruby community has 

produced Ruby-based versions of Prolog [61] [62] as well as favorably compared Ruby 

to Lisp [63].  This suggests that a Ruby-based inference engine is well within the realm 

of possibility. 

5. Operational Environments and Run-time Environments  

Initial experiments rely on available hardware platforms, mainly surplus laptop 

computers, PC104 computers and Velcro.  The initial experiments planned at TARDEC 

include building control and sensor suites for small robots. The experiments will examine 

necessary maneuvers to position mission packages precisely with respect to an item of 

interest.   

Surplus equipment is adequate for initial experiments in a controlled laboratory 

environment, but future experiments will require a more robust solution for 

communication with legacy artifacts in harsh field environments.  This is particularly true 

when working with smaller man-portable platforms and their associated power and 

weight capacity limits.   A variety of small run-time platforms are candidates to act as 

helper computers, including Sun Microsystems SunSPOTs [64].   

Considerations for run-time helper computers include power consumption, 

support for wireless networking, I/O ports, J2ME [65] support, packaging and 

environmental specifications.  A TARDEC engineers should consider a product survey as 

a candidate project for a TARDEC engineering co-op work rotation. 

6. Optional Component as Compositions 

The experimental implementation only defines one optional component.  

Additional optional components are necessary for instrumentation, fault insertion, 

bandwidth limiting, assertion checking or any number of other tasks.  Currently, optional 

components are atomic.  Future uses for optional components may require custom 



147 

configurations; this will require engineers to model optional components as GME models, 

with a selection of sub-components to choose from.  An example is an optional 

component that logs XML messages dependent on one or more attributes.  The optional 

component would have a “child” modeling level to allow the domain modeler to select 

conditions and actions, such as a loop component or an if-then component. 

7. Integration with Other Modeling Environments  

As mentioned, the experimental implementation uses the GME tool for many 

good reasons.  The GME tool is not, however, the only modeling tool available.  There 

are proprietary and other open source tools for Meta-modeling.  Of particular interest is 

the Eclipse environment due to its use in other TARDEC projects and Rational Rose, for 

the same reason.   

8. Education Outreach 

Future efforts in education have many facets from K-12 to professional education. 

National objectives for Science and Technology Education [66] mandate that 

TARDEC and other DoD researchers perform K-12 outreach in a variety of ways, from 

school tours, to Engineer-in-the-Classroom programs to after-hours technology programs 

for high school students held at government facilities.  The “First” [67] robotics program 

and local experience has proven that robotics programs capture and hold students’ 

attention.   

Local experience at TARDEC includes working with high school students. Early 

efforts used Motorola 6805-based microcontrollers and small hand built mobility 

platforms.  Later efforts included Lego Mindstorms™ sets.  The Lego Mindstorms™ 

produced small successes earlier.  Early success caused the students to engage and 

explore more difficult concepts sooner that they might otherwise have done.  Many of the 

students moved on to engineering curriculums in college.  Several students pursued 

Cooperative Education opportunities with TARDEC.   They are now staff engineers.  

A possible use of the tools and processes developed in this effort is to tailor the 

process to the K-12 community. Meta-modeling may be beyond younger student’s 



148 

capabilities, but domain modeling and experiment development are certainly possibilities.  

Students can participate in real experiments using in-house assets.  

The next aspect is formal education in engineering.  This project presents 

potential for several aspects of engineering.  One is to create a unit on architectural 

modeling for a specific set of requirements.  Another is to examine the effect of 

structured vs. ad-hoc processes.  Continuing, the process described in this dissertation 

may be a useful tool to remove some of the rote coding required in term projects in 

robotics and let the students focus on the relationships between premise and outcome.  

Looking from different perspectives, creating components might be a useful coding 

exercise, or creating interface specifications for adaptors might be a useful exercise for a 

software engineering unit. 

Lastly, outreach should entail dissemination of concepts created in this effort to 

members of the immediate DoD robotics community, including DoD and commercial 

partners.  This is a two-level effort.  The first is an informational campaign, through 

presentations and demonstrations, targeted at the immediate community, the JAUS 

Working Group, the JGRE coordinator and member organizations as well as professional 

organizations, such as the Association of Unmanned Vehicle Systems International 

(AUVSI).  The second level will include tutorials, examples and a reference distribution.  

A publicly releasable CD or open source web sites are candidates to make this a reality. 

C. LIMITATIONS 

As noted earlier, this project is just beginning.  There are gaps in the environment 

capabilities.   

The component repository is sparsely populated.  The programmers populating 

the component repository must be sensitive to emerging needs.  The component 

repository is local to the modeler’s workstation. 

The environment requires software engineers with modeling experience.  New 

engineers do not have significant exposure to software modeling at University.  In house 

On-the-Job Training (OJT) programs are necessary. 



149 

Educating and training domain engineers is also necessary. This is a new process, 

and virtually every new process meets with resistance. 

The process is unproven.  TARDEC plans several small evaluation projects that 

will lead to a planned new project.  Success with these efforts will demonstrate the utility 

of the process. 

The process is incomplete.  There is currently no facility to store physical test 

plans and results.  An in-house effort is under way to identify and characterize the 

currently available TARDEC and Army data storage assets.  An extension to the project 

will create an experimental results repository. 

 

 

 

 

 



150 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



151 

APPENDIX A. ABBREVIATIONS AND ACRONYMS 

Shorthand Meaning 
AADL Architecture Analysis and Design Language 
AS Aerospace Standard 
AUV Autonomous Underwater Vehicle 
AUVSI Association of Unmanned Vehicle Systems International 
BNF Backus–Naur Form 
CENTCOM Central Command 
CHP California Highway Patrol 
DARPA Defense Advanced Research Projects Agency 
DIS Distributed Interactive Simulation 
DREN Defense Research and Engineering Network 
DSML Domain-specific Modeling Language 
EOD Explosive Ordnance Disposal 
ESQL Embedded System Control Language 
FA Functional Agent 
FCO First Class Object 
FCO First Class Object 
FCS Future Combat System 
GME Generic Modeling Environment 
IED Improvised Explosive Device 
IR Infrared 
IXO Information Exploitation Office 
JAUS Joint Architecture for Unmanned Systems 
JAXB Java Architecture for XML Binding 
JGRE Joint Ground Robotics Enterprise 
KDS Kuchera Defense Systems 
KS Knowledge Store 
LIDAR Light-Imaging Detection and Ranging 
NAFIPS North American Fuzzy Information Processing Society 
NQC Not Quite C 
OCL Object Constraint Language 
OCL Object Constraint Language 
OCU Operator Control Unit 
ODIS Omni-Directional Inspection System represented by robot 

vehicle used at Traffic Control Point 
OJT On-the-Job Training 
OMG Object management Group 
ONS Operational Need Statement 
POLA Port of Los Angeles 
POLB Port of Long Beach 
QOS Quality of Service 



152 

RCX LEGO Control Brick 
REXML Ruby XML Processor 
RF Radio Frequency 
RS-JPO Robotic Systems Joint Program Office 
SAE Society of Automotive Engineers 
SIL System Integration Laboratory 
SMART The Army’s Simulation and Modeling for Acquisition, 

Requirements and Training 
SPIE International Society for Optical Engineering 
STANAG NATO Standardization Agreement 
TACOM Tank-automotive and Armaments Command 
TARDEC Army Tank Automotive Research, Development and 

Engineering Center 
TCP Traffic Control Point 
TLD Total Level Detector 
TRL Technology Readiness Level 
TSA Transportation Security Agency 
TTP Tactics, Techniques and Procedures 
TTS  Tactics, Techniques and Procedures 
TVWS Track Vehicle Work Station 
UAV Unmanned Aerial Vehicle 
UDP User Datagram Protocol 
UGV Unmanned ground vehicle 
UGV Unmanned Ground Vehicle 
UML Unified Modeling Language 
UML Unified Modeling Language 
UNS Urgent Need Statement 
USU Utah State University 
XMI XML Metadata Interchange 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



153 

APPENDIX B. JOINT ARCHITECTURE FOR UNMANNED 
SYSTEMS (JAUS) 

A. INTRODUCTION 

The Robotic Systems Joint Program Office (RS-JPO) at Redstone Arsenal 

initiated JAUS in the mid 1990’s to address shortcomings in Robotic System 

Development.  In particular, there was a concern that the robotic development efforts 

were uncoordinated and proprietary. Robotic systems were unique, lessons learned 

difficult to transfer between systems and technology insertion slow. A challenge unique 

to DoD also existed, working within acquisition guidelines.  

The JAUS effort embraced an evolutionary acquisition approach; field affordable 

technology now, insert new technology as it becomes relevant and affordable.  JAUS 

addresses systems engineering issues, including life cycle cost, schedules, risk 

management, performance based requirements and open standards. 

Government engineers originally led the JAUS development team.  Other team 

members consisted of volunteers from industry and academia.  Having a government lead 

violated DoD’s shift away from MIL Standards to Industry Standards.  About 2003, the 

JAUS committee announced that the Society of Automotive Engineers (SAE) agreed to 

adopt the JAUS effort as Aerospace Standard AS-4.  At the current time, the first SAE 

standards documents are beginning to mature.  The JAUS Working Group coexists with 

the SAE AS-4 committee.   

The JAUS documentation is widely available at several Internet accessible sites, 

the primary being http://www.jauswg.org, [35], however, due to the importance of JAUS 

to ground robotics, a brief overview is appropriate here. 

B. ELEMENTS OF JAUS 

JAUS is a collection of six documents; the two main documents are the Domain 

Model, and the Reference Architecture.  The remaining documents are the Standard 



154 

Operating Procedure, the Document Control Plan, the Strategic Plan and a draft 

Compliance Plan.  This appendix only discusses the Domain Model and Reference 

Architecture. 

1. Domain Model 

The domain model is the user requirements model (Figure 52).  The domain 

model encapsulates similar functions into groups called Functional Agents (FA).  There 

are six FAs: Command, Tele-Communications, Mobility, Payloads, Maintenance and 

Training. The domain model encapsulates similar knowledge into groups called 

Knowledge Stores (KS). There are four KSs: Vehicle Status, World Map, Library and 

Log. The domain model also encapsulates similar devices into groups called Device 

Groups. Each FA and KS has a set of capabilities and services. 

  

Figure 52. JAUS Domain Model, Model Elements are Enclosed Within the 
Shaded Rectangle. Functional Agents are Internal Rectangles, while Knowledge 

Stores are Ovals [From Ref. [35]] 

… 

RSTA 

Internal 
State 

Sensors 

Test 
Equipment 

Comm. 
Devices 

External 
Training 
Devices 

CCoommmmaanndd TTeellee--  
CCoommmmuunniiccaattiioonn  

MMaaiinntteennaannccee  TTrraaiinniinngg  MMoobbiilliittyy  Control  
Devices 

Mission 
Modules 

Mechanical 

PPaayyllooaaddss  

LLiibbrraarryy  LLoogg 

VVeehhiiccllee  
SSttaattuuss  WWoorrlldd  

MMooddeell  



155 

2. Reference Architecture 

Within the JAUS reference architecture, a system is composed of a set of 

operational subsystems, such as, operator control unit, sensors and a mobility platform. 

Each subsystem has one or more processing nodes; each processing node has one and 

only one Message Routing Service (MRS).  A processing node contains one or more 

components (Figure 53). 

 

 

Figure 53. JAUS Reference Architecture Physical Topology [From Ref. [35]] 

 

The JAUS system level refers to a group of artifacts working together.  A system 

may be as simple as and OCU and a mobility platform.  On the other hand, the upper 

level is unbounded; a system may include multiple platforms, multiple communications 

elements and a collection of control and monitoring stations. 

Node 

Comp Comp Comp 

Node 

Operational 
Subsystem

Operational 
Subsystem

SSyysstteemm  

Operational 
Subsystem

. . .

Node Node . . .

Comp . . .



156 

A JAUS subsystem refers to a functional aspect of a system.  JAUS subsystems 

may be composed of distinct items, such as an OCU or a platform, or a subsystem may be 

a collection of distinct items, a swarm of robots for example. 

A JAUS node refers to a “black box” item.  A node contains all the hardware and 

software needed to perform its function.  Node examples include controllers, knowledge 

stores and sensor processors.  From a hardware perspective, a node is an entity on the 

network, although it may contain several internal computing devices.  From a software 

perspective, a node is the software that runs on the node. 

A JAUS component is the lowest level of JAUS decomposition.  Components 

perform specific operations.  Components communicate via JAUS messages, their 

interface to other components, and higher-level aspects of the JAUS system. 

a. JAUS Components 

JAUS currently has five component groups:   

Command and control components (Table 8) provide a mechanism for 

integration at the system and sub-system level. Command and control components may 

send and receive any message to and from any component. 

Name ID Function 

System Commander 40 Coordinates all activity within a given system. 
Subsystem Commander 32 Coordinates all activity within a given subsystem. 

Table 8. JAUS Command and Control Components Necessary for System 
Integration 

 

Communications components maintain (Table 9) data links.  There is one 

defined communication component. 

Name ID Function 

Communicator 35 Maintains all data links to other subsystems. 

Table 9. JAUS Communications Component Maintains Data Links 



157 

Platform components (Table 10) report states in state for a platform, and 

effect change in state for a platform. All platforms are points in a six degree of freedom 

space.  Driver commands use wrench messages.  Wrench messages have separate fields 

for each of the three linear and three rotational dimensions for both propulsive and 

resistive effort.  Propulsive efforts range from -100% to +100% effort (throttle).  

Resistive efforts range from 0 to +100% (braking). 

Name ID Function 

Global Pose Sensor 38 Report the global position and orientation. 

Local Pose Sensor 41 Report the local position and orientation. 

Velocity State Sensor 42 Report the instantaneous velocity. 

Primitive Driver 33 Basic driving, mobility and platform device control. 

Reflexive Driver 43 Modify a commanded effort to insure safety or 
stability. 

Global Vector Driver 34 Closed loop control of the desired global heading, 
altitude and speed. 

Local Vector Driver 44 Closed loop control of the desired local heading, 
pitch, roll and speed. 

Global Waypoint Driver 45 Determine the desired wrench of the platform given 
the desired waypoint(s), travel speed, current 
platform pose and current velocity state. 

Local Waypoint Driver 46 Determine the desired wrench of the platform given 
the desired waypoint(s), travel speed, current 
platform pose and current velocity state. 

Global Path Segment Driver 47 Perform closed loop control of position and velocity 
along a path. 

Local Path Segment Driver 48 Perform closed loop control of position and velocity 
along a path. 

Table 10. JAUS Platform Components Report on and Control Platform State 

 

Manipulator components (Table 11) support both low open and closed 

loop control of a robotic arm. Coordinate systems are either a global coordinate system, a 

coordinate system that is relative to the base of the vehicle, or a coordinate system 

relative to a manipulator (for the case of a manipulator attached to a manipulator). 



158 

Name ID Function 

Primitive Manipulator 49 Remote operation (open-loop control) of a single 
manipulator system 

Manipulator Joint Position 
Sensor 

51 Report the values of manipulator joint parameters 

Manipulator Joint Velocity 
Sensor 

52 Report the values of instantaneous joint velocities. 

Manipulator Joint Positions 
Driver 

54 Closed-loop joint position control. 

Manipulator End-Effectors 
Pose Driver 

55 Closed-loop position and orientation control of the 
end-effectors. 
 

Manipulator Joint 
Velocities Driver 

56 Closed-loop joint velocity control.  
 

Manipulator End-Effectors 
Velocity State Driver 

57 Closed-loop velocity control of the end effectors. 
 

Manipulator Joint Move 
Driver 

58 Closed-loop joint level control of the manipulator 
where motion parameters for each joint are 
specified. 

Manipulator End-Effectors 
Discrete Pose Driver 

59 Closed-loop control of the end-effectors pose 
through a series of specified positions and 
orientations. 
 

Table 11. JAUS Manipulator Components for Command and Control of a 
Robotic Arm 

 

Environmental sensor components interact with the environment 

surrounding the platform (Table 12). 

Name ID Function 

Visual Sensor 37 Controls the camera(s) of a subsystem. 
 

Range Sensor 50 Reports range data for the purpose of object 
detection. 

Table 12. JAUS Environmental Sensor Components to interact with the 
Platform Environment 

 



159 

b. JAUS Messages 

JAUS has multiple methods for messaging in the Reference Architecture.  

Command messages are one way; a response is not necessarily required.  A query 

message requires a response; messages transfer data to queues. A service connection is a 

specific periodic dataflow; data arriving at a service connection is not queued.  Thus, 

JAUS supports clock driven and event driven as well as hybrid architectures. 

JAUS message conform to a set of standards.  Knowledge of these 

standards is especially important when converting between JAUS and actuator or sensor 

application specific formats.   

Textual data uses Latin-1 ISO/IEC 8859 Latin-1 standard character set. 

Fixed length strings do not require a terminator; the length of the string is its declared 

length. Variable length strings will use the NUL character as a terminator. 

Numeric data representation is shown in Table 13: 

Data Type Size (in Bytes) Representation 
Byte 1 8 bit unsigned integer 
Short Integer 2 16 bit signed integer 
Integer 4 32 bit signed integer 
Long Integer 8 64 bit signed integer 
Unsigned Short Integer 2 16 bit unsigned integer 
Unsigned Integer 4 32 bit unsigned integer 
Unsigned Long Integer 8 64 bit unsigned integer 
Float 4 IEEE 32 bit floating point number 
Long Float 8 IEEE 64 bit floating point number 

Table 13. JAUS Numerical Data Types [From Ref. [35]] 

 

Byte order is “Little Endian”.  Data streams shall transmit the least 

significant byte first. Additional standards define platform orientation and Manipulator 

Linkage Notation. 

JAUS defines six message classes. The messages are grouped by 

“command code”. JAUS defines the format of each message. 



160 

“Command class” messages effect system mode changes, actuation 

control, alter the state of a component or subsystem, in other words,  initiate some type of 

action. 

“Query class” messages solicit information from another component.  

Query class messages require an inform class message in reply. 

“Inform class” messages transmit information between components.   

“Event setup class” messages setup the parameters for an Event 

Notification message and have a component start monitoring for the trigger event.   

“Event notification class” messages communicate the occurrence of an 

event.  Events may be unsolicited, as in the case of exceeding an environmental 

parameter. 

“Node Management class” messages transmit node specific information.  

Node Specific communications includes configuration information and component 

registration. 

C. SUMMARY 

The JAUS is the primary DoD standard for Ground vehicles.  It is required in 

many DoD ground robotic acquisition efforts.  JAUS has wide community support, as is 

evidenced by the membership in the JAUS/AS-4 working groups.  The two will proceed 

in parallel until the SAE AS-4 Unmanned Systems Standard has matured.  JAUS will 

exist as long as legacy acquisition efforts require it.  



161 

APPENDIX C. GENERIC MODELING ENVIRONMENT EXPERIMENT XML FILES 

A. INTRODUCTION 

GME supports several storage formats,  a proprietary fast binary format, relational database and  XML import and export for 

Meta and domain models.  XML Meta-model representation facilitates tool extension or integration with other tools.  It also provides a 

readable version of the stored Meta-model.  The GME designates the Meta-model XML by the file extension .xmp, where GME 

designates the domain model XML by the file extension .xme. Both the paradigm file and the domain model file are persistent work 

products for future use in production and analysis.  

 

Figure 54. The Generic Modeling Environment Stores Meta-models and Domain Models as XML Files 

 

Meta-model 
Paradigm XML 
*.xmp

Domain Model 
XML *.xme 

Meta-
modeling 

Domain 
Modeling Start GME End GME

Generate Domain 
Modeling Environment 



162 

1. Experiment XML Paradigm File – Basic_Robot.xmp 

 <?xml version="1.0"?> 
<!DOCTYPE paradigm SYSTEM "edf.dtd"> 
 
<paradigm name="Basic_Robot" guid="{A3161AA9-3ADF-4DA1-9FF0-384EE576D75F}" cdate="Sat Feb 25 16:41:47 2006" mdate="Sat Feb 25 16:41:47 2006" > 
 
 <comment></comment> 
 
 <author></author> 
 
 <folder name = "RootFolder" metaref = "1000"  rootobjects = "ModelDiagram" > 
  <attrdef name="CONTROLID" metaref = "1278" valuetype = "enum" defvalue = "BumpStop"> 
   <enumitem dispname = "BumpStop" value = "BumpStop"></enumitem> 
   <enumitem dispname = "Follower" value = "Follower"></enumitem> 
  </attrdef> 
  <attrdef name="IPAddress" metaref = "1210" valuetype = "string" defvalue = ""> 
   <dispname>Enter Ip Address</dispname> 
  </attrdef> 
  <attrdef name="JAUSMessagesIn" metaref = "1212" valuetype = "string" defvalue = ""> 
   <dispname>Enter Input JAUS Messages separated by commas:</dispname> 
  </attrdef> 
  <attrdef name="JAUSMessagesOut" metaref = "1213" valuetype = "string" defvalue = ""> 
   <dispname>Enter Output JAUS Messages separated by commas:</dispname> 
  </attrdef> 
  <attrdef name="ManipulatorType" metaref = "1279" valuetype = "enum" defvalue = "Oceaneering"> 
   <enumitem dispname = "Oceaneering" value = "Oceaneering"></enumitem> 
   <enumitem dispname = "Kuchera" value = "Kuchera"></enumitem> 
   <enumitem dispname = "RE2" value = "RE2"></enumitem> 
   <enumitem dispname = "Turing" value = "Turing"></enumitem> 
   <enumitem dispname = "IRobot" value = "IRobot"></enumitem> 
   <enumitem dispname = "Talon" value = "Talon"></enumitem> 
  </attrdef> 
  <attrdef name="MessageID" metaref = "1045" valuetype = "enum" defvalue = "M1"> 
   <dispname>Enter Message Id</dispname> 
   <enumitem dispname = "M1" value = "M1"></enumitem> 
   <enumitem dispname = "M2" value = "M2"></enumitem> 
   <enumitem dispname = "M3" value = "M3"></enumitem> 
  </attrdef> 
  <attrdef name="Multiplicity" metaref = "1277" valuetype = "integer" defvalue = "1"> 
   <dispname>Number of inputs allowed</dispname> 



163 

  </attrdef> 
  <attrdef name="OCUID" metaref = "1280" valuetype = "enum" defvalue = "ODISOCU"> 
   <dispname>Enter OCU ID</dispname> 
   <enumitem dispname = "ODISOCU" value = "ODISOCU"></enumitem> 
   <enumitem dispname = "SIMODISOCU" value = "SIMODISOCU"></enumitem> 
   <enumitem dispname = "ODIS-T3OCU" value = "ODIS-T3OCU"></enumitem> 
   <enumitem dispname = "Laptop" value = "Laptop"></enumitem> 
   <enumitem dispname = "Swabby" value = "Swabby"></enumitem> 
  </attrdef> 
  <attrdef name="Optional" metaref = "1042" valuetype = "enum" defvalue = "optional"> 
   <enumitem dispname = "optional" value = "optional"></enumitem> 
  </attrdef> 
  <attrdef name="PlatformType" metaref = "1043" valuetype = "enum" defvalue = "ODIS"> 
   <dispname>Enter Robot type</dispname> 
   <enumitem dispname = "ODIS" value = "ODIS"></enumitem> 
   <enumitem dispname = "CHAOS" value = "CHAOS"></enumitem> 
   <enumitem dispname = "PIONEER" value = "PIONEER"></enumitem> 
   <enumitem dispname = "SIMODIS" value = "SIMODIS"></enumitem> 
  </attrdef> 
  <attrdef name="Port" metaref = "1211" valuetype = "integer" defvalue = ""> 
   <dispname>Enter IP Port</dispname> 
  </attrdef> 
  <attrdef name="SensorName" metaref = "1281" valuetype = "enum" defvalue = "SONAR"> 
   <enumitem dispname = "SONAR" value = "SONAR"></enumitem> 
   <enumitem dispname = "GPS" value = "GPS"></enumitem> 
   <enumitem dispname = "Explosives" value = "Explosives"></enumitem> 
   <enumitem dispname = "Chemical" value = "Chemical"></enumitem> 
   <enumitem dispname = "Biological" value = "Biological"></enumitem> 
   <enumitem dispname = "Bumper" value = "Bumper"></enumitem> 
   <enumitem dispname = "LASER" value = "LASER"></enumitem> 
   <enumitem dispname = "LADAR" value = "LADAR"></enumitem> 
  </attrdef> 
  <attrdef name="SerialPort" metaref = "1214" valuetype = "enum" defvalue = "1"> 
   <dispname>Enter Serial Port to connect to:</dispname> 
   <enumitem dispname = "1" value = "1"></enumitem> 
   <enumitem dispname = "2" value = "2"></enumitem> 
   <enumitem dispname = "3" value = "3"></enumitem> 
   <enumitem dispname = "4" value = "4"></enumitem> 
  </attrdef> 
  <attrdef name="Speed" metaref = "1215" valuetype = "enum" defvalue = "9600"> 
   <dispname>Select Baud Rate</dispname> 



164 

   <enumitem dispname = "9600" value = "9600"></enumitem> 
   <enumitem dispname = "19200" value = "19200"></enumitem> 
  </attrdef> 
  <atom name = "Adaptor" metaref = "1046"  attributes = "JAUSMessagesIn JAUSMessagesOut"> 
    <regnode name = "namePosition" value ="4"></regnode> 
    <regnode name = "icon" value ="AdaptorIcon.bmp"></regnode> 
  </atom> 
  <atom name = "Optional" metaref = "1282"  attributes = "Optional"> 
    <regnode name = "namePosition" value ="4"></regnode> 
    <regnode name = "icon" value ="OptionalIcon.bmp"></regnode> 
  </atom> 
  <atom name = "SerialCommunications" metaref = "1216"  attributes = "SerialPort Speed"> 
    <regnode name = "namePosition" value ="4"></regnode> 
    <regnode name = "icon" value ="InOutPort.bmp"></regnode> 
  </atom> 
  <atom name = "TCPCommunications" metaref = "1260"  attributes = "Port IPAddress"> 
    <regnode name = "namePosition" value ="4"></regnode> 
    <regnode name = "icon" value ="CommsIcon.bmp"></regnode> 
  </atom> 
  <atom name = "UDPCommunications" metaref = "1243"  attributes = "Port IPAddress"> 
    <regnode name = "namePosition" value ="4"></regnode> 
    <regnode name = "icon" value ="CommsIcon.bmp"></regnode> 
  </atom> 
  <connection name = "Connection" metaref = "1155" > 
    <regnode name = "color" value ="0x000000"></regnode> 
    <regnode name = "dstStyle" value ="arrow"></regnode> 
    <regnode name = "srcStyle" value ="butt"></regnode> 
    <regnode name = "lineType" value ="solid"></regnode> 
   <connjoint> 
    <pointerspec name = "src"> 
     <pointeritem desc = "Adaptor"></pointeritem> 
     <pointeritem desc = "Optional"></pointeritem> 
     <pointeritem desc = "SerialCommunications"></pointeritem> 
     <pointeritem desc = "TCPCommunications"></pointeritem> 
     <pointeritem desc = "UDPCommunications"></pointeritem> 
    </pointerspec> 
    <pointerspec name = "dst"> 
     <pointeritem desc = "Adaptor"></pointeritem> 
     <pointeritem desc = "Optional"></pointeritem> 
     <pointeritem desc = "SerialCommunications"></pointeritem> 
     <pointeritem desc = "TCPCommunications"></pointeritem> 



165 

     <pointeritem desc = "UDPCommunications"></pointeritem> 
    </pointerspec> 
   </connjoint> 
  </connection> 
  <connection name = "Message" metaref = "1006" attributes = "MessageID" > 
    <regnode name = "color" value ="0x000000"></regnode> 
    <regnode name = "dstStyle" value ="arrow"></regnode> 
    <regnode name = "srcStyle" value ="butt"></regnode> 
    <regnode name = "lineType" value ="solid"></regnode> 
   <connjoint> 
    <pointerspec name = "src"> 
     <pointeritem desc = "Control"></pointeritem> 
     <pointeritem desc = "Manipulator"></pointeritem> 
     <pointeritem desc = "OCU"></pointeritem> 
     <pointeritem desc = "Platform"></pointeritem> 
     <pointeritem desc = "Sensor"></pointeritem> 
    </pointerspec> 
    <pointerspec name = "dst"> 
     <pointeritem desc = "Control"></pointeritem> 
     <pointeritem desc = "Manipulator"></pointeritem> 
     <pointeritem desc = "OCU"></pointeritem> 
     <pointeritem desc = "Platform"></pointeritem> 
     <pointeritem desc = "Sensor"></pointeritem> 
    </pointerspec> 
   </connjoint> 
  </connection> 
  <model name = "Control" metaref = "1049" attributes = "Multiplicity CONTROLID" > 
    <regnode name = "namePosition" value ="4"></regnode> 
    <regnode name = "icon" value ="Control.gif"></regnode> 
   <constraint name="Constraint" eventmask = "0x800" depth = "0" priority = "1"> 
    <![CDATA[self.attachingConnections("src") ->size <= self.Multiplicity]]> 
    <dispname>Robotic System FCO are only allowed one output</dispname> 
   </constraint> 
   <constraint name="ValidMessagesrcCardinality3" eventmask = "0x0" depth = "1" priority = "1"> 
    <![CDATA[let srcCount = self.attachingConnections( "dst", Message ) -> size in 
                     (srcCount <= 1)]]> 
    <dispname>Multiplicity of objects, which are associated to RoboticSystem as "src" over Message, has to match 0..1.</dispname> 
   </constraint> 
   <role name = "Adaptor" metaref = "1156" kind = "Adaptor"></role> 
   <role name = "Connection" metaref = "1194" kind = "Connection"></role> 
   <role name = "Optional" metaref = "1283" kind = "Optional"></role> 



166 

   <role name = "SerialCommunications" metaref = "1218" kind = "SerialCommunications"></role> 
   <role name = "TCPCommunications" metaref = "1261" kind = "TCPCommunications"></role> 
   <role name = "UDPCommunications" metaref = "1244" kind = "UDPCommunications"></role> 
   <aspect name = "Aspect" metaref = "1284" attributes = "Multiplicity CONTROLID" > 
    <part metaref = "1160" role = "Adaptor" primary = "yes" linked = "no"></part> 
    <part metaref = "1196" role = "Connection" primary = "yes" linked = "no"></part> 
    <part metaref = "1285" role = "Optional" primary = "yes" linked = "no"></part> 
    <part metaref = "1221" role = "SerialCommunications" primary = "yes" linked = "no"></part> 
    <part metaref = "1263" role = "TCPCommunications" primary = "yes" linked = "no"></part> 
    <part metaref = "1246" role = "UDPCommunications" primary = "yes" linked = "no"></part> 
   </aspect> 
  </model> 
  <model name = "Manipulator" metaref = "1051" attributes = "Multiplicity ManipulatorType" > 
    <regnode name = "namePosition" value ="4"></regnode> 
    <regnode name = "icon" value ="Manipulator.gif"></regnode> 
   <constraint name="Constraint" eventmask = "0x800" depth = "0" priority = "1"> 
    <![CDATA[self.attachingConnections("src") ->size <= self.Multiplicity]]> 
    <dispname>Robotic System FCO are only allowed one output</dispname> 
   </constraint> 
   <constraint name="ValidMessagesrcCardinality3" eventmask = "0x0" depth = "1" priority = "1"> 
    <![CDATA[let srcCount = self.attachingConnections( "dst", Message ) -> size in 
                     (srcCount <= 1)]]> 
    <dispname>Multiplicity of objects, which are associated to RoboticSystem as "src" over Message, has to match 0..1.</dispname> 
   </constraint> 
   <role name = "Adaptor" metaref = "1163" kind = "Adaptor"></role> 
   <role name = "Connection" metaref = "1197" kind = "Connection"></role> 
   <role name = "Optional" metaref = "1286" kind = "Optional"></role> 
   <role name = "SerialCommunications" metaref = "1223" kind = "SerialCommunications"></role> 
   <role name = "TCPCommunications" metaref = "1264" kind = "TCPCommunications"></role> 
   <role name = "UDPCommunications" metaref = "1247" kind = "UDPCommunications"></role> 
   <aspect name = "Aspect" metaref = "1287" attributes = "Multiplicity ManipulatorType" > 
    <part metaref = "1167" role = "Adaptor" primary = "yes" linked = "no"></part> 
    <part metaref = "1199" role = "Connection" primary = "yes" linked = "no"></part> 
    <part metaref = "1288" role = "Optional" primary = "yes" linked = "no"></part> 
    <part metaref = "1226" role = "SerialCommunications" primary = "yes" linked = "no"></part> 
    <part metaref = "1266" role = "TCPCommunications" primary = "yes" linked = "no"></part> 
    <part metaref = "1249" role = "UDPCommunications" primary = "yes" linked = "no"></part> 
   </aspect> 
  </model> 
  <model name = "ModelDiagram" metaref = "1138" > 
    <regnode name = "namePosition" value ="4"></regnode> 



167 

   <role name = "Control" metaref = "1144" kind = "Control"></role> 
   <role name = "Manipulator" metaref = "1145" kind = "Manipulator"></role> 
   <role name = "Message" metaref = "1139" kind = "Message"></role> 
   <role name = "OCU" metaref = "1146" kind = "OCU"></role> 
   <role name = "Platform" metaref = "1147" kind = "Platform"></role> 
   <role name = "Sensor" metaref = "1148" kind = "Sensor"></role> 
   <aspect name = "Aspect" metaref = "1289" > 
    <part metaref = "1150" role = "Control" primary = "yes" linked = "no"></part> 
    <part metaref = "1151" role = "Manipulator" primary = "yes" linked = "no"></part> 
    <part metaref = "1141" role = "Message" primary = "yes" linked = "no"></part> 
    <part metaref = "1152" role = "OCU" primary = "yes" linked = "no"></part> 
    <part metaref = "1153" role = "Platform" primary = "yes" linked = "no"></part> 
    <part metaref = "1154" role = "Sensor" primary = "yes" linked = "no"></part> 
   </aspect> 
  </model> 
  <model name = "OCU" metaref = "1054" attributes = "Multiplicity OCUID" > 
    <regnode name = "namePosition" value ="4"></regnode> 
    <regnode name = "icon" value ="OCU.bmp"></regnode> 
   <constraint name="Constraint" eventmask = "0x800" depth = "0" priority = "1"> 
    <![CDATA[self.attachingConnections("src") ->size <= self.Multiplicity]]> 
    <dispname>Robotic System FCO are only allowed one output</dispname> 
   </constraint> 
   <constraint name="ValidMessagesrcCardinality3" eventmask = "0x0" depth = "1" priority = "1"> 
    <![CDATA[let srcCount = self.attachingConnections( "dst", Message ) -> size in 
                     (srcCount <= 1)]]> 
    <dispname>Multiplicity of objects, which are associated to RoboticSystem as "src" over Message, has to match 0..1.</dispname> 
   </constraint> 
   <role name = "Adaptor" metaref = "1173" kind = "Adaptor"></role> 
   <role name = "Connection" metaref = "1201" kind = "Connection"></role> 
   <role name = "Optional" metaref = "1290" kind = "Optional"></role> 
   <role name = "SerialCommunications" metaref = "1229" kind = "SerialCommunications"></role> 
   <role name = "TCPCommunications" metaref = "1268" kind = "TCPCommunications"></role> 
   <role name = "UDPCommunications" metaref = "1251" kind = "UDPCommunications"></role> 
   <aspect name = "Aspect" metaref = "1291" attributes = "Multiplicity OCUID" > 
    <part metaref = "1177" role = "Adaptor" primary = "yes" linked = "no"></part> 
    <part metaref = "1203" role = "Connection" primary = "yes" linked = "no"></part> 
    <part metaref = "1292" role = "Optional" primary = "yes" linked = "no"></part> 
    <part metaref = "1232" role = "SerialCommunications" primary = "yes" linked = "no"></part> 
    <part metaref = "1270" role = "TCPCommunications" primary = "yes" linked = "no"></part> 
    <part metaref = "1253" role = "UDPCommunications" primary = "yes" linked = "no"></part> 
   </aspect> 



168 

  </model> 
  <model name = "Platform" metaref = "1056" attributes = "Multiplicity PlatformType" > 
    <regnode name = "namePosition" value ="4"></regnode> 
    <regnode name = "icon" value ="Platform.bmp"></regnode> 
   <constraint name="Constraint" eventmask = "0x800" depth = "0" priority = "1"> 
    <![CDATA[self.attachingConnections("src") ->size <= self.Multiplicity]]> 
    <dispname>Robotic System FCO are only allowed one output</dispname> 
   </constraint> 
   <constraint name="ValidMessagesrcCardinality3" eventmask = "0x0" depth = "1" priority = "1"> 
    <![CDATA[let srcCount = self.attachingConnections( "dst", Message ) -> size in 
                     (srcCount <= 1)]]> 
    <dispname>Multiplicity of objects, which are associated to RoboticSystem as "src" over Message, has to match 0..1.</dispname> 
   </constraint> 
   <role name = "Adaptor" metaref = "1180" kind = "Adaptor"></role> 
   <role name = "Connection" metaref = "1204" kind = "Connection"></role> 
   <role name = "Optional" metaref = "1293" kind = "Optional"></role> 
   <role name = "SerialCommunications" metaref = "1234" kind = "SerialCommunications"></role> 
   <role name = "TCPCommunications" metaref = "1271" kind = "TCPCommunications"></role> 
   <role name = "UDPCommunications" metaref = "1254" kind = "UDPCommunications"></role> 
   <aspect name = "Aspect" metaref = "1294" attributes = "Multiplicity PlatformType" > 
    <part metaref = "1184" role = "Adaptor" primary = "yes" linked = "no"></part> 
    <part metaref = "1206" role = "Connection" primary = "yes" linked = "no"></part> 
    <part metaref = "1295" role = "Optional" primary = "yes" linked = "no"></part> 
    <part metaref = "1237" role = "SerialCommunications" primary = "yes" linked = "no"></part> 
    <part metaref = "1273" role = "TCPCommunications" primary = "yes" linked = "no"></part> 
    <part metaref = "1256" role = "UDPCommunications" primary = "yes" linked = "no"></part> 
   </aspect> 
  </model> 
  <model name = "Sensor" metaref = "1059" attributes = "Multiplicity SensorName" > 
    <regnode name = "namePosition" value ="4"></regnode> 
    <regnode name = "icon" value ="Sensor.bmp"></regnode> 
   <constraint name="Constraint" eventmask = "0x800" depth = "0" priority = "1"> 
    <![CDATA[self.attachingConnections("src") ->size <= self.Multiplicity]]> 
    <dispname>Robotic System FCO are only allowed one output</dispname> 
   </constraint> 
   <constraint name="ValidMessagesrcCardinality3" eventmask = "0x0" depth = "1" priority = "1"> 
    <![CDATA[let srcCount = self.attachingConnections( "dst", Message ) -> size in 
                     (srcCount <= 1)]]> 
    <dispname>Multiplicity of objects, which are associated to RoboticSystem as "src" over Message, has to match 0..1.</dispname> 
   </constraint> 
   <role name = "Adaptor" metaref = "1187" kind = "Adaptor"></role> 



169 

   <role name = "Connection" metaref = "1207" kind = "Connection"></role> 
   <role name = "Optional" metaref = "1296" kind = "Optional"></role> 
   <role name = "SerialCommunications" metaref = "1239" kind = "SerialCommunications"></role> 
   <role name = "TCPCommunications" metaref = "1274" kind = "TCPCommunications"></role> 
   <role name = "UDPCommunications" metaref = "1257" kind = "UDPCommunications"></role> 
   <aspect name = "Aspect" metaref = "1297" attributes = "Multiplicity SensorName" > 
    <part metaref = "1191" role = "Adaptor" primary = "yes" linked = "no"></part> 
    <part metaref = "1209" role = "Connection" primary = "yes" linked = "no"></part> 
    <part metaref = "1298" role = "Optional" primary = "yes" linked = "no"></part> 
    <part metaref = "1242" role = "SerialCommunications" primary = "yes" linked = "no"></part> 
    <part metaref = "1276" role = "TCPCommunications" primary = "yes" linked = "no"></part> 
    <part metaref = "1259" role = "UDPCommunications" primary = "yes" linked = "no"></part> 
   </aspect> 
  </model> 
 </folder> 
</paradigm> 

 

 

 



170 

2. Experiment XML Domain Model File – Basic_Robot.xme 

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE project SYSTEM "mga.dtd"> 
 
<project guid="{A579F914-33EF-401B-8F7C-E32118CA3970}" cdate="Sun Mar 25 15:01:30 2007" mdate="Sun Mar 25 15:01:30 2007" version="" metaguid="{E692DE2C-
056B-4E0A-85CE-134DECD45012}" metaversion="" metaname="Basic_Robot"> 
 <name>Root Folder</name> 
 <comment></comment> 
 <author></author> 
 <folder id="id-006a-00000001" relid="0x1" childrelidcntr="0x1" kind="RootFolder"> 
  <name>Root Folder</name> 
  <model id="id-0065-00000001" kind="ModelDiagram" relid="0x1" childrelidcntr="0x8"> 
   <name>NewModelDiagram</name> 
   <model id="id-0065-00000002" kind="Control" role="Control" relid="0x1" childrelidcntr="0x9"> 
    <name>Control</name> 
    <regnode name="PartRegs" status="undefined"> 
     <value></value> 
     <regnode name="Aspect" status="undefined"> 
      <value></value> 
      <regnode name="Position" isopaque="yes"> 
       <value>667,149</value> 
      </regnode> 
     </regnode> 
    </regnode> 
    <attribute kind="CONTROLID" status="meta"> 
     <value>BumpStop</value> 
    </attribute> 
    <attribute kind="Multiplicity" status="meta"> 
     <value>1</value> 
    </attribute> 
    <atom id="id-0066-00000003" kind="Adaptor" role="Adaptor" relid="0x1"> 
     <name>Adaptor</name> 
     <regnode name="PartRegs" status="undefined"> 
      <value></value> 
      <regnode name="Aspect" status="undefined"> 
       <value></value> 
       <regnode name="Position" isopaque="yes"> 
        <value>129,102</value> 
       </regnode> 
      </regnode> 



171 

     </regnode> 
     <attribute kind="JAUSMessagesIn"> 
      <value>M2,M4</value> 
     </attribute> 
     <attribute kind="JAUSMessagesOut"> 
      <value>M4</value> 
     </attribute> 
    </atom> 
    <atom id="id-0066-00000004" kind="SerialCommunications" role="SerialCommunications" relid="0x2"> 
     <name>SerialCommunications</name> 
     <regnode name="PartRegs" status="undefined"> 
      <value></value> 
      <regnode name="Aspect" status="undefined"> 
       <value></value> 
       <regnode name="Position" isopaque="yes"> 
        <value>509,103</value> 
       </regnode> 
      </regnode> 
     </regnode> 
     <attribute kind="SerialPort" status="meta"> 
      <value>1</value> 
     </attribute> 
     <attribute kind="Speed" status="meta"> 
      <value>9600</value> 
     </attribute> 
    </atom> 
    <atom id="id-0066-00000005" kind="UDPCommunications" role="UDPCommunications" relid="0x3"> 
     <name>UDPCommunications</name> 
     <regnode name="PartRegs" status="undefined"> 
      <value></value> 
      <regnode name="Aspect" status="undefined"> 
       <value></value> 
       <regnode name="Position" isopaque="yes"> 
        <value>538,300</value> 
       </regnode> 
      </regnode> 
     </regnode> 
     <attribute kind="IPAddress"> 
      <value>10.0.0.1</value> 
     </attribute> 
     <attribute kind="Port"> 



172 

      <value>3743</value> 
     </attribute> 
    </atom> 
    <atom id="id-0066-00000006" kind="optional" role="optional" relid="0x4"> 
     <name>optional</name> 
     <regnode name="PartRegs" status="undefined"> 
      <value></value> 
      <regnode name="Aspect" status="undefined"> 
       <value></value> 
       <regnode name="Position" isopaque="yes"> 
        <value>193,286</value> 
       </regnode> 
      </regnode> 
     </regnode> 
     <attribute kind="Optional" status="meta"> 
      <value>optional</value> 
     </attribute> 
    </atom> 
    <connection id="id-0068-00000009" kind="Connection" role="Connection" relid="0x6"> 
     <name>Connection</name> 
     <regnode name="autorouterPref" isopaque="yes"> 
      <value>Nn</value> 
     </regnode> 
     <connpoint role="dst" target="id-0066-00000003"/> 
     <connpoint role="src" target="id-0066-00000004"/> 
    </connection> 
    <connection id="id-0068-0000000a" kind="Connection" role="Connection" relid="0x7"> 
     <name>Connection</name> 
     <regnode name="autorouterPref" isopaque="yes"> 
      <value>Sw</value> 
     </regnode> 
     <connpoint role="src" target="id-0066-00000003"/> 
     <connpoint role="dst" target="id-0066-00000006"/> 
    </connection> 
    <connection id="id-0068-0000000b" kind="Connection" role="Connection" relid="0x8"> 
     <name>Connection</name> 
     <regnode name="autorouterPref" isopaque="yes"> 
      <value>Ew</value> 
     </regnode> 
     <connpoint role="dst" target="id-0066-00000005"/> 
     <connpoint role="src" target="id-0066-00000006"/> 



173 

    </connection> 
    <connection id="id-0068-0000000c" kind="Connection" role="Connection" relid="0x9"> 
     <name>Connection</name> 
     <regnode name="autorouterPref" isopaque="yes"> 
      <value>Ne</value> 
     </regnode> 
     <connpoint role="dst" target="id-0066-00000003"/> 
     <connpoint role="src" target="id-0066-00000005"/> 
    </connection> 
   </model> 
   <model id="id-0065-00000003" kind="OCU" role="OCU" relid="0x2" childrelidcntr="0x4"> 
    <name>OCU</name> 
    <regnode name="PartRegs" status="undefined"> 
     <value></value> 
     <regnode name="Aspect" status="undefined"> 
      <value></value> 
      <regnode name="Position" isopaque="yes"> 
       <value>646,373</value> 
      </regnode> 
     </regnode> 
    </regnode> 
    <attribute kind="Multiplicity" status="meta"> 
     <value>1</value> 
    </attribute> 
    <attribute kind="OCUID" status="meta"> 
     <value>ODISOCU</value> 
    </attribute> 
    <atom id="id-0066-0000000b" kind="Adaptor" role="Adaptor" relid="0x1"> 
     <name>Adaptor</name> 
     <regnode name="PartRegs" status="undefined"> 
      <value></value> 
      <regnode name="Aspect" status="undefined"> 
       <value></value> 
       <regnode name="Position" isopaque="yes"> 
        <value>156,177</value> 
       </regnode> 
      </regnode> 
     </regnode> 
     <attribute kind="JAUSMessagesIn"> 
      <value>M4</value> 
     </attribute> 



174 

     <attribute kind="JAUSMessagesOut"> 
      <value>M1</value> 
     </attribute> 
    </atom> 
    <atom id="id-0066-0000000c" kind="UDPCommunications" role="UDPCommunications" relid="0x2"> 
     <name>UDPCommunications</name> 
     <regnode name="PartRegs" status="undefined"> 
      <value></value> 
      <regnode name="Aspect" status="undefined"> 
       <value></value> 
       <regnode name="Position" isopaque="yes"> 
        <value>450,191</value> 
       </regnode> 
      </regnode> 
     </regnode> 
     <attribute kind="IPAddress"> 
      <value>10.0.0.3</value> 
     </attribute> 
     <attribute kind="Port"> 
      <value>3743</value> 
     </attribute> 
    </atom> 
    <connection id="id-0068-00000011" kind="Connection" role="Connection" relid="0x3"> 
     <name>Connection</name> 
     <regnode name="autorouterPref" isopaque="yes"> 
      <value>Nn</value> 
     </regnode> 
     <connpoint role="src" target="id-0066-0000000b"/> 
     <connpoint role="dst" target="id-0066-0000000c"/> 
    </connection> 
    <connection id="id-0068-00000012" kind="Connection" role="Connection" relid="0x4"> 
     <name>Connection</name> 
     <regnode name="autorouterPref" isopaque="yes"> 
      <value>We</value> 
     </regnode> 
     <connpoint role="dst" target="id-0066-0000000b"/> 
     <connpoint role="src" target="id-0066-0000000c"/> 
    </connection> 
   </model> 
   <model id="id-0065-00000004" kind="Platform" role="Platform" relid="0x3" childrelidcntr="0x8"> 
    <name>Platform</name> 



175 

    <regnode name="PartRegs" status="undefined"> 
     <value></value> 
     <regnode name="Aspect" status="undefined"> 
      <value></value> 
      <regnode name="Position" isopaque="yes"> 
       <value>226,379</value> 
      </regnode> 
     </regnode> 
    </regnode> 
    <attribute kind="Multiplicity" status="meta"> 
     <value>1</value> 
    </attribute> 
    <attribute kind="PlatformType" status="meta"> 
     <value>ODIS</value> 
    </attribute> 
    <atom id="id-0066-00000007" kind="Adaptor" role="Adaptor" relid="0x1"> 
     <name>Adaptor</name> 
     <regnode name="PartRegs" status="undefined"> 
      <value></value> 
      <regnode name="Aspect" status="undefined"> 
       <value></value> 
       <regnode name="Position" isopaque="yes"> 
        <value>128,156</value> 
       </regnode> 
      </regnode> 
     </regnode> 
     <attribute kind="JAUSMessagesIn"> 
      <value>M4</value> 
     </attribute> 
     <attribute kind="JAUSMessagesOut"> 
      <value>M1</value> 
     </attribute> 
    </atom> 
    <atom id="id-0066-00000008" kind="UDPCommunications" role="UDPCommunications" relid="0x2"> 
     <name>UDPCommunications</name> 
     <regnode name="PartRegs" status="undefined"> 
      <value></value> 
      <regnode name="Aspect" status="undefined"> 
       <value></value> 
       <regnode name="Position" isopaque="yes"> 
        <value>611,184</value> 



176 

       </regnode> 
      </regnode> 
     </regnode> 
     <attribute kind="IPAddress"> 
      <value>10.0.0.2</value> 
     </attribute> 
     <attribute kind="Port"> 
      <value>3743</value> 
     </attribute> 
    </atom> 
    <atom id="id-0066-00000009" kind="optional" role="optional" relid="0x3"> 
     <name>optional</name> 
     <regnode name="PartRegs" status="undefined"> 
      <value></value> 
      <regnode name="Aspect" status="undefined"> 
       <value></value> 
       <regnode name="Position" isopaque="yes"> 
        <value>359,65</value> 
       </regnode> 
      </regnode> 
     </regnode> 
     <attribute kind="Optional" status="meta"> 
      <value>optional</value> 
     </attribute> 
    </atom> 
    <atom id="id-0066-0000000a" kind="optional" role="optional" relid="0x4"> 
     <name>optional</name> 
     <regnode name="PartRegs" status="undefined"> 
      <value></value> 
      <regnode name="Aspect" status="undefined"> 
       <value></value> 
       <regnode name="Position" isopaque="yes"> 
        <value>366,282</value> 
       </regnode> 
      </regnode> 
     </regnode> 
     <attribute kind="Optional" status="meta"> 
      <value>optional</value> 
     </attribute> 
    </atom> 
    <connection id="id-0068-0000000d" kind="Connection" role="Connection" relid="0x5"> 



177 

     <name>Connection</name> 
     <regnode name="autorouterPref" isopaque="yes"> 
      <value>Ne</value> 
     </regnode> 
     <connpoint role="src" target="id-0066-00000008"/> 
     <connpoint role="dst" target="id-0066-00000009"/> 
    </connection> 
    <connection id="id-0068-0000000e" kind="Connection" role="Connection" relid="0x6"> 
     <name>Connection</name> 
     <regnode name="autorouterPref" isopaque="yes"> 
      <value>Wn</value> 
     </regnode> 
     <connpoint role="dst" target="id-0066-00000007"/> 
     <connpoint role="src" target="id-0066-00000009"/> 
    </connection> 
    <connection id="id-0068-0000000f" kind="Connection" role="Connection" relid="0x7"> 
     <name>Connection</name> 
     <regnode name="autorouterPref" isopaque="yes"> 
      <value>Sw</value> 
     </regnode> 
     <connpoint role="src" target="id-0066-00000007"/> 
     <connpoint role="dst" target="id-0066-0000000a"/> 
    </connection> 
    <connection id="id-0068-00000010" kind="Connection" role="Connection" relid="0x8"> 
     <name>Connection</name> 
     <regnode name="autorouterPref" isopaque="yes"> 
      <value>Es</value> 
     </regnode> 
     <connpoint role="dst" target="id-0066-00000008"/> 
     <connpoint role="src" target="id-0066-0000000a"/> 
    </connection> 
   </model> 
   <model id="id-0065-00000005" kind="Sensor" role="Sensor" relid="0x4" childrelidcntr="0x3"> 
    <name>Sensor</name> 
    <regnode name="PartRegs" status="undefined"> 
     <value></value> 
     <regnode name="Aspect" status="undefined"> 
      <value></value> 
      <regnode name="Position" isopaque="yes"> 
       <value>228,83</value> 
      </regnode> 



178 

     </regnode> 
    </regnode> 
    <attribute kind="Multiplicity" status="meta"> 
     <value>1</value> 
    </attribute> 
    <attribute kind="SensorName" status="meta"> 
     <value>SONAR</value> 
    </attribute> 
    <atom id="id-0066-00000001" kind="Adaptor" role="Adaptor" relid="0x1"> 
     <name>Adaptor</name> 
     <regnode name="PartRegs" status="undefined"> 
      <value></value> 
      <regnode name="Aspect" status="undefined"> 
       <value></value> 
       <regnode name="Position" isopaque="yes"> 
        <value>143,102</value> 
       </regnode> 
      </regnode> 
     </regnode> 
     <attribute kind="JAUSMessagesIn" status="meta"> 
      <value></value> 
     </attribute> 
     <attribute kind="JAUSMessagesOut"> 
      <value>M4</value> 
     </attribute> 
    </atom> 
    <atom id="id-0066-00000002" kind="SerialCommunications" role="SerialCommunications" relid="0x2"> 
     <name>SerialCommunications</name> 
     <regnode name="PartRegs" status="undefined"> 
      <value></value> 
      <regnode name="Aspect" status="undefined"> 
       <value></value> 
       <regnode name="Position" isopaque="yes"> 
        <value>495,96</value> 
       </regnode> 
      </regnode> 
     </regnode> 
     <attribute kind="SerialPort" status="meta"> 
      <value>1</value> 
     </attribute> 
     <attribute kind="Speed" status="meta"> 



179 

      <value>9600</value> 
     </attribute> 
    </atom> 
    <connection id="id-0068-00000006" kind="Connection" role="Connection" relid="0x3"> 
     <name>Connection</name> 
     <regnode name="autorouterPref" isopaque="yes"> 
      <value>Ew</value> 
     </regnode> 
     <connpoint role="src" target="id-0066-00000001"/> 
     <connpoint role="dst" target="id-0066-00000002"/> 
    </connection> 
   </model> 
   <connection id="id-0068-00000001" kind="Message" role="Message" relid="0x5"> 
    <name>Message</name> 
    <regnode name="autorouterPref" isopaque="yes"> 
     <value>Ne</value> 
    </regnode> 
    <attribute kind="MessageID" status="meta"> 
     <value>M1</value> 
    </attribute> 
    <connpoint role="dst" target="id-0065-00000002"/> 
    <connpoint role="src" target="id-0065-00000003"/> 
   </connection> 
   <connection id="id-0068-00000002" kind="Message" role="Message" relid="0x6"> 
    <name>Message</name> 
    <regnode name="autorouterPref" isopaque="yes"> 
     <value>En</value> 
    </regnode> 
    <attribute kind="MessageID" status="meta"> 
     <value>M1</value> 
    </attribute> 
    <connpoint role="dst" target="id-0065-00000002"/> 
    <connpoint role="src" target="id-0065-00000005"/> 
   </connection> 
   <connection id="id-0068-00000004" kind="Message" role="Message" relid="0x7"> 
    <name>Message</name> 
    <regnode name="autorouterPref" isopaque="yes"> 
     <value>Wn</value> 
    </regnode> 
    <attribute kind="MessageID" status="meta"> 
     <value>M1</value> 



180 

    </attribute> 
    <connpoint role="src" target="id-0065-00000002"/> 
    <connpoint role="dst" target="id-0065-00000004"/> 
   </connection> 
   <connection id="id-0068-00000005" kind="Message" role="Message" relid="0x8"> 
    <name>Message</name> 
    <regnode name="autorouterPref" isopaque="yes"> 
     <value>Ew</value> 
    </regnode> 
    <attribute kind="MessageID" status="meta"> 
     <value>M1</value> 
    </attribute> 
    <connpoint role="dst" target="id-0065-00000003"/> 
    <connpoint role="src" target="id-0065-00000004"/> 
   </connection> 
  </model> 
 </folder> 
</project>



181 

APPENDIX D. RULES 

A. INTRODUCTION 

Rules are instantiated in the Ruby language.  The rules operate on the GME 

domain model XML file (.xme). Part one of this appendix presents each rule in text and 

pseudo code.  It also presents output of each rule, although these intermediate values are 

internal for the first half of the rules.  The second half of the rules builds the codes for 

operating the prototype. 

1. Rule Descriptions 

Rule 1. Create Artifact List 
 
Parse the XML file, find the Artifacts from child models of the top-level model and 
create Artifact frames for them with id, name and kind slots (Table 14). 
 
Pseudo Code Output 
artifact = new array 
i = 1 
for each level 1 model in 
“basic_robot_domain.xme”  
    artifact[i] = new hash 
artifact[i].id =  id 
artifact[i].name =  name 
artifact[i].kind = kind 
i = i + 1 
endfor 
 

Artifact[1].id = "id-0065-00000002" 
Artifact[1].name = ODISOCU 
Artifact[1].kind = “OCU” 
 
Artifact[2].id = "id-0065-00000003" 
Artifact[2].name = ODIS 
Artifact[2].kind = “Platform” 
 
Artifact[3].id = "id-0065-00000004" 
Artifact[3].name = BumpControl 
Artifact[3].kind = “Control” 
 
Artifact[4].id = "id-0065-00000005" 
Artifact[4].name = Sonar 
Artifact[4].kind = “Sensor” 
 

Table 14. Create an Array Artifacts, at each Artifact Create a Hash and 
Instantiate Information Frames for the Artifacts 

 



182 

Rule 2. Create Channel List: 
 
Parse the XML file, find the Channels from child <connection> tags of the top level 
model and create Channel frames for them with source and destination slots where source 
and destination are the “id’s” are directly related to <Connpoint> target and role 
attributes (Table 15).  
 
Pseudo Code Output 
channel = new array 
i = 1  
for each level 1 connection in 
“basic_robot_domain.xme”  
 
channel[i] = new hash 
channel[i].source = source 
channel[i].destination = destination 
endfor 

Channel[1].source =  "id-0065-00000005" 
Channel[1].destination = "id-0065-00000004" 
 
Channel[2].source =  "id-0065-00000004" 
Channel[2].destination = "id-0065-00000003" 
 
Channel[3].source =  "id-0065-00000003" 
Channel[3].destination = "id-0065-00000002" 
 
Channel[4].source = "id-0065-00000002" 
Channel[4].destination = "id-0065-00000004" 
 

Table 15. Create an Array Channels, at each Channel Create a Hash and 
Instantiate Information Frames for the Channels 

 



183 

Rule 3. Additional Channel information: 
 
For readability, add Channel[Y].source.name to each Channel Frame by going through 
the Artifacts and comparing their id slot to the Channel[Y].source slot.  If they match, 
add the Artifact name to a sub slot of Channel[Y].source, Channel[Y].source.name.  Do 
same for Channel[Y].destination. (Table 16). 
 
Pseudo Code Output 
 
For each Channel 
  For each Artifact 
     If Artifact.id = Channel.source,  
           Then 
           Channel.source.name = Artifact[.name 
     Endif 
 
     If Artifact.id = Channel.destination,  
           Then 
           Channel[.destination.name = Artifact.name 
   Endif 
 Endfor 
Endfor 
 

Channel[1].source =  "id-0065-00000005" 
Channel[1].destination = "id-0065-00000004" 
Channel[1].source.name =  Sonar 
Channel[1]. destination.name = BumpControl 
 
Channel[2].source =  "id-0065-00000004" 
Channel[2]. destination = "id-0065-00000003" 
Channel[2].source.name =  BumpControl 
Channel[2]. destination.name = ODIS 
 
Channel[3].source =  "id-0065-00000003" 
Channel[3]. destination = "id-0065-00000002" 
Channel[3].source.name =  ODIS 
Channel[3]. destination.name = ODISOCU 
 
Channel[4].source = "id-0065-00000002" 
Channel[4]. destination = "id-0065-00000004" 
Channel[4].source.name = ODISOCU 
Channel[4]. destination.name = BumpControl 
 

Table 16. Match GME Generated ID Fields between Artifacts and Channels to 
Add Human Understandable Names to the Channel Information Frames 



184 

Rule 4. Create Artifact Component Lists: 
 
For each Artifact discovered in Rule 1, parse the XML file, find the child Atoms.  Create 
Component frames for them with id, name and kind slots (Table 17). 
 
Pseudo Code Output 
For each level 1 Model in xme file 
  For each atom in model 
   Component = hash.new 
    Component.id = id, 
    Componen.name = name, 
    Component.kind = kind. 
  Endfor 
 Endfor 
 

Component[1,1].id = "id-0066-0000000b" 
Component[1,1].name = ODISOCUAdaptor 
Component[1,1].kind = "Adaptor" 
 
Component[1,2].id = "id-0066-0000000c" 
Component[1,2].name = 
ODISOCUTCPCommunications 
Component[1,2].kind = "TCPCommunications" 
 
 
Component[2,1].id = "id-0066-00000007" 
Component[2,1].name = ODISAdaptor 
Component[1,1].kind = "Adaptor" 
 
Component[2,2].id = "id-0066-00000008" 
Component[2,2].name = 
ODISTCPCommunications 
Component[2,2].kind = "TCPCommunications" 
 
Component[2,3].id = "id-0066-00000009" 
Component[2,3].name = ODISInoptional 
Component[2,3].kind = "optional" 
 
Component[2,4].id = "id-0066-0000000a" 
Component[2,4].name = ODISOutoptional 
Component[2,4].kind = "optional" 
 
Component[3,1].id = "id-0066-00000003" 
Component[3,1].name = BumpControlAdaptor 
Component[3,1].kind = "Adaptor" 
 
Component[3,2].id = "id-0066-00000004" 
Component[3,2].name = 
BumpControlSerialCommunications 
Component[3,2].kind = " SerialCommunications" 
 
Component[3,3].id = "id-0066-00000005" 
Component[3,3].name = 
BumpControlTCPCommunicationsl 
Component[3,3].kind = "TCPCommunications" 
 
Component[3,4].id = "id-0066-00000006" 
Component[3,4].name = optional 
Component[3,4].kind = "optional" 
 
 
Component[4,1].id = "id-0066-00000001" 



185 

Component[4,1].name = SonarControlAdaptor 
Component[4,1].kind = "Adaptor" 
 
Component[4,2].id = "id-0066-00000002" 
Component[4,2].name = 
SonarSerialCommunications 
Component[4,2].kind = " SerialCommunications" 
 

Table 17. Create Component Arrays for each Artifact, Create a Hash and 
Instantiate Information Frames for the Components as was Done for the Parent 

Artifacts 

 



186 

Rule 5. Create Artifact dataflow lists: 
 
Parse the XML file, find the Dataflows from child <connection> tags of the child model 
(Artifact) of the top level model and create Dataflow frames for them with source and 
destination slots where source and destination are the “id’s” are directly related to 
<Connpoint> target and role attributes (Table 18). 
 
Pseudo Code Output 
For each Artifact  
   For each connection 
    Dataflow = new.hash 
     For each Connpoint 
       If Connpoint .role = “src” 
          Then 
           Dataflow.source =Connpoint.target 
       Endif 
        If Connpoint role = “dst” 
           Then 
           Dataflow.destination =Connpoint.target 
        Endif 
     Endfor 
   Endfor 
 Endfor 
 
 

Dataflow[1,1].source = "id-0066-0000000b" 
Dataflow[1,1].destination = "id-0066-0000000c" 
 
Dataflow[1,2].source = "id-0066-0000000c" 
Dataflow[1,2].destination = "id-0066-0000000b" 
 
Dataflow[2,1].source = "id-0066-00000007" 
Dataflow[2,1].destination = "id-0066-0000000a" 
 
Dataflow[2,2].source = "id-0066-0000000a" 
Dataflow[2,2].destination = "id-0066-00000008" 
 
Dataflow[2,3].source = "id-0066-00000008" 
Dataflow[2,3].destination = "id-0066-00000009" 
 
Dataflow[2,4].source = "id-0066-00000009" 
Dataflow[2,4].destination = "id-0066-00000007" 
 
Dataflow[3,1].source = "id-0066-00000004" 
Dataflow[3,1].destination = "id-0066-00000003" 
 
Dataflow[3,2].source = "id-0066-00000003" 
Dataflow[3,2].destination = "id-0066-00000006" 
 
Dataflow[3,3].source = "id-0066-00000006" 
Dataflow[3,3].destination = "id-0066-00000005" 
 
Dataflow[3,4].source = "id-0066-00000005" 
Dataflow[3,4].destination = "id-0066-00000003" 
 
Dataflow[4,1].source = "id-0066-00000001" 
Dataflow[4,1].destination = "id-0066-00000002" 

Table 18. Create an Arrays of  Dataflows associated with each Artifact, at each 
Dataflow, Create a Hash and Instantiate Information Frames for the Dataflows  

 

 



187 

Rule 6. Additional Data flow information: 
 
Add Dataflow[X,W].source.name to each Dataflow Frame by going through the 
Components in the current X and comparing their id slot to the Dataflow[X,W].source 
slot.  If they match, add the Component name to a sub slot of Dataflow[X,W].source, 
Dataflow[X,W].source.name.  Do same for Dataflow[X,W].destination. 
 
Above rules can be modified to capture other information captured in the Component 
data structures or directly from the XML file (Table 19). 
 
Pseudo Code Output 
For each Artifact 
  For each Component 
     For each Dataflow 
       If Component.id = Dataflow.source 
          Then 
             Dataflow.source.name= Component.name 
             Dataflow.source.kind = Component.kind 
       Endif 
       If Component.id = Dataflow.destination, 
          Then  
           Dataflow.destination.name =                       
                                            Componen.name    
           Dataflow.destination.kind =  
                                         Component.kind 
        Endif 
    Endfor 
  Endfor 
Endfor 

Dataflow[1,1].source = "id-0066-0000000b" 
Dataflow[1,1].source.name = ODISOCUAdaptor 
Dataflow[1,1].source.kind =  "Adaptor" 
Dataflow[1,1].destination = "id-0066-0000000c" 
Dataflow[1,1].destination.name = 
ODISOCUTCPCommunications 
Dataflow[1,1].destination.kind = 
"TCPCommunications" 
 
Dataflow[1,2].source = "id-0066-0000000c" 
Dataflow[1,2].source.name = 
ODISOCUTCPCommunications 
Dataflow[1,2].source.kind = "TCPCommunications" 
Dataflow[1,2].destination = "id-0066-0000000b" 
Dataflow[1,2].destination.name = ODISOCUAdaptor 
Dataflow[1,2].destination.kind = "Adaptor" 
 
Dataflow[2,1].source = "id-0066-00000007" 
Dataflow[2,1].source.name = ODISAdaptor 
Dataflow[2,1].source.kind = "Adaptor" 
Dataflow[2,1].destination = "id-0066-0000000a" 
Dataflow[2,1].destination.name = ODISOutoptional 
Dataflow[2,1].destination.kind = "optional" 
 
Dataflow[2,2].source = "id-0066-0000000a" 
Dataflow[2,2].source.name = ODISOutoptional 
Dataflow[2,2].source.kind = "optional" 
Dataflow[2,2].destination = "id-0066-00000008" 
Dataflow[2,2].destination.name = 
ODISTCPCommunications 
Dataflow[2,2].destination.kind =  
                                   "TCPCommunications" 
 
Dataflow[2,3].source = "id-0066-00000008" 
Dataflow[2,3].source.name =  
ODISTCPCommunications 
Dataflow[2,3].source.kind =            
                                         "TCPCommunications" 
Dataflow[2,3].destination = "id-0066-00000009" 
Dataflow[2,3].destination.name = ODISInoptional 
Dataflow[2,3].destination.kind = "optional" 



188 

Dataflow[2,4].source = "id-0066-00000009" 
Dataflow[2,4].source.name = ODISInoptional 
Dataflow[2,4].source.kind =  "optional" 
Dataflow[2,4].destination = "id-0066-00000007" 
Dataflow[2,4].destination.name = ODISAdaptor 
Dataflow[2,4].destination.kind = "Adaptor" 
 
Dataflow[3,1].source = "id-0066-00000004" 
Dataflow[3,1].source.name =  
BumpControlSerialCommunications 
Dataflow[3,1].source.kind =  " 
SerialCommunications" 
Dataflow[3,1].destination = "id-0066-00000003" 
Dataflow[3,1].destination.name = 
BumpControlAdaptor 
Dataflow[3,1].destination.kind = "Adaptor" 
 
Dataflow[3,2].source = "id-0066-00000003" 
Dataflow[3,2].source.name =  BumpControlAdaptor 
Dataflow[3,2].source.kind =  "Adaptor" 
Dataflow[3,2].destination = "id-0066-00000006" 
Dataflow[3,2].destination.name = optional 
Dataflow[3,2].destination.kind = "optional" 
 
Dataflow[3,3].source = "id-0066-00000006" 
Dataflow[3,3].source.name =  optional 
Dataflow[3,3].source.kind = "optional" 
Dataflow[3,3].destination = "id-0066-00000005" 
Dataflow[3,3].destination.name = 
BumpControlTCPCommunications 
Dataflow[3,3].destination.kind = 
"TCPCommunications" 
 
Dataflow[3,4].source = "id-0066-00000005" 
Dataflow[3,4].source.name =  
BumpControlTCPCommunications 
Dataflow[3,4].source.kind =  "TCPCommunications" 
Dataflow[3,4].destination = "id-0066-00000003" 
Dataflow[3,4].destination.name = 
BumpControlAdaptor 
Dataflow[3,4].destination.kind = "Adaptor" 
 
Dataflow[4,1].source = "id-0066-00000001" 
Dataflow[4,1].source.name =  SonarControlAdaptor 
Dataflow[4,1].source.kind =  "Adaptor" 
Dataflow[4,1].destination = "id-0066-00000002" 
Dataflow[4,1].destination.name = 
SonarSerialCommunications 
Dataflow[4,1].destination.kind = " 
SerialCommunications" 

Table 19. Match GME Generated ID Fields between Components and 
Dataflows to Add Human Understandable Information to the Channel Information 

Frames 



189 

Rule 7. Create Artifact Message Lists: 
 
For each Component atom, if  XML kind attribute is “adaptor,” search for an <attribute> 
tag with of kind = "JAUSMessagesIn.”  Insert the <attribute> tag’s value into the 
corresponding Artifact’s messages_in slot.  Do same for kind = "JAUSMessagesOut" 
(Table 20). 
 
Pseudo Code Output 
For each Artifact 
  For each Component 
   If  Component kind = “Adaptor” 
   then 
     For each attribute in Component 
        If attribute.kind="JAUSMessagesIn" 
        then 
          Artifact.messages_in = attribute.value.    
         Endif 
         If attribute.kind="JAUSMessagesOut" 
         then 
         Artifac.messages_out = attribute.value. 
         Endif 
    Endfor 
   Endif 
Endfor 
 

Artifact[1].id = "id-0065-00000002" 
Artifact[1].name = ODISOCU 
Artifact[1].kind = “OCU”  
Artifact[1].messages_in = M1 
Artifact[1].messages_out = M2 
 
Artifact[2].id = "id-0065-00000003" 
Artifact[2].name = ODIS 
Artifact[2].kind = “Platform” 
Artifact[2].messages_in =  M3 
Artifact[2].messages_out = M1 
 
Artifact[3].id = "id-0065-00000004" 
Artifact[3].name = BumpControl 
Artifact[3].kind = “Control” 
Artifact[3].messages_in = M2,M4 
Artifact[3].messages_out = M3 
 
Artifact[4].id = "id-0065-00000005" 
Artifact[4].name = Sonar 
Artifact[4].kind = “Sensor” 
Artifact[4].messages_in = null 
Artifact[4].messages_out = M4 
 

Table 20. Search the Components  for Adaptor Types, Register Supported 
Messages in the Artifact Frames (for future use) 

 
 
 
 
 
 
 
 
 
 
 



190 

Rule 8. Create Communications Components attribute list: 
 
From the XML file, fill in appropriate slots in the Component data structures for 
Communication components, i.e., speed and serial port for serial communications, IP 
address or appropriate IP port for IP communications (Table 21). 
 
Pseudo Code Output 
For each Artifact 
   For each Component 
     If Component kind = SerialCommunications 
        For each attribute] 
           If  attribute.kind = “Speed” 
             then 
             Component.serialspeed = attribute.value 
           Endif 
           If  attribute. kind = “SerialPort” 
           then 
           Component.serialport = attribute.value 
          Endif 
         If attribute.kind = UDPCommunications 
           then 
        If  attribute. kind = “IPAddress” 
         then 
         Component.IPAddress = attribute.value 
         Endif 
         If  attribute.kind = “Port” 
           then 
            Component.port = attribute.value 
        Endif 
      Endif 
    Endfor 
  Endif 
 Endfor 
Endfor 
 
 

Component[1,1].id = "id-0066-0000000b" 
Component[1,1].name = ODISOCUAdaptor 
Component[1,1].kind = "Adaptor" 
 
Component[1,2].id = "id-0066-0000000c" 
Component[1,2].name = 
ODISOCUTCPCommunications 
Component[1,2].kind = "TCPCommunications" 
Component[1,2].IPAddress = 10.0.0.3 
Component[1,1].port = 3743 
 
Component[2,1].id = "id-0066-00000007" 
Component[2,1].name = ODISAdaptor 
Component[1,1].kind = "Adaptor" 
 
Component[2,2].id = "id-0066-00000008" 
Component[2,2].name = 
ODISTCPCommunications 
Component[2,2].kind = "TCPCommunications" 
Component[2,2].IPAddress = 10.0.0.2 
Component[2,2].port = 3743 
 
Component[2,3].id = "id-0066-00000009" 
Component[2,3].name = ODISInoptional 
Component[2,3].kind = "optional" 
 
Component[2,4].id = "id-0066-0000000a" 
Component[2,4].name = ODISOutoptional 
Component[2,4].kind = "optional" 
 
Component[3,1].id = "id-0066-00000003" 
Component[3,1].name = BumpControlAdaptor 
Component[3,1].kind = "Adaptor" 
 
Component[3,2].id = "id-0066-00000004" 
Component[3,2].name = 
BumpControlSerialCommunications 
Component[3,2].kind = " SerialCommunications" 
Component[3,2].serialspeed =  9600 
Component[3,2].serialport = 1 
 
Component[3,3].id = "id-0066-00000005" 
Component[3,3].name = 
BumpControlTCPCommunicationsl 
Component[3,3].kind = "TCPCommunications" 
Component[3,3].IPAddress = 10.0.0.1 



191 

Component[3,3].port = 3743 
 
Component[3,4].id = "id-0066-00000006" 
Component[3,4].name = optional 
Component[3,4].kind = "optional" 
 
Component[4,1].id = "id-0066-00000001" 
Component[4,1].name = SonarControlAdaptor 
Component[4,1].kind = "Adaptor" 
 
Component[4,2].id = "id-0066-00000002" 
Component[4,2].name = 
SonarSerialCommunications 
Component[4,2].kind = " SerialCommunications" 
Component[4,2].serialspeed = 9600 
Component[4,2].serialport = 1 
 

Table 21. For Each Artifact, Search find the Communications Parameters and 
Fill in Communications Fields in the Component Frames 



192 

Rule 9. Build Node Folders:  
 
Create a file folder for each Artifact using the Artifacts name slot for a folder name 
(Table 22). 
 
Pseudo Code Output 
For each Artifact 
  Create folder with name string “Artifact.name.” 
Endfor 
 

Folder $ARBITRARY\ 
   $ARBITRARY\ODISOCU 
   $ARBITRARY\ODIS 
   $ARBITRARY\BumpStop 
   $ARBITRARY\Sonar 
 

Table 22. For Each Artifact, Create Folders in File System 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



193 

Rule 10. Import Files. 
 
Import configurable and non-configurable files associated with each component into the 
parent artifact’s folder (Table 23). 
 
Pseudo Code Output 
For each Artifact 
    For each Component  
      If Component.kind = (“Adaptor” or “optional”) 
         Then 
          copy file “Component.name” into folder           
                                                        “Artifact.name” 
         Else 
    copy file “Componen.kind\*” into folder                 
                                                        “Artifact.name” 
       Endif 
   Endfor 
Endfor 
 

$ARBITRARY\ODISOCU:  
        ODISOCUMain.java  
        ODISOCUAdaptor.java  
        ODISOCUConstants.java 
        UDPCommunications.java 
 
$ARBITRARY\ODIS: 
        ODISMain.java  
        ODISAdaptor.java  
        ODISConstants.java 
        UDPCommunications.java 
        Optional.java 
 
$ARBITRARY\BumpStop: 
        BumpStopMain.java 
        BumpStopAdaptor.Java  
        BumpStopConstants.Java 
        Optional.java 
  UDPCommunications.java  
  SerialCommunications.java 
 
$ARBITRARY\Sonar: 
        SONARMain.java 
        SONARAdaptor.java 
        SONARConstants.java 
        Serialcommunications.java 
  
 

Table 23. For Each Artifact, Copy the Component Files Matching Model 
Components from the Component Repository to the Appropriate Folder in the 

Working Directory 

 
 
 
 
 
 
 
 
 
 
 
 



194 

Rule 11. Set Artifact Comms destination element.  
 
For each artifact, search the channel data.  If the artifact name field matches the channel 
source_name field, then set the artifact’s comms_destination field to the value of the 
channel’s destination name field. (Table 24).  
 
Pseudo Code Output 
For each Artifact 
  For each channel 
     If  channel.source_name = Artifact.name 
       Then 
        Artifact.comms_destination =  
                                      channel.destination_name 
     endif 
    Endfor 
Endfor 

[{"comms_destination"=>"ODIS", 
  "name"=>"BumpStop", 
  "displayed_name"=>"Control", 
  "messages_out"=>"M4", 
  "id"=>"id-0065-00000002", 
  "messages_in"=>"M2,M4"}, 
 
 {"comms_destination"=>"BumpStop", 
  "name"=>"ODISOCU", 
  "displayed_name"=>"OCU", 
  "messages_out"=>"M1", 
  "id"=>"id-0065-00000003", 
  "messages_in"=>"M4"}, 
 
 {"comms_destination"=>"ODISOCU", 
  "name"=>"ODIS", 
  "displayed_name"=>"Platform", 
  "messages_out"=>"M1", 
  "id"=>"id-0065-00000004", 
  "messages_in"=>"M4"}, 
 
 {"comms_destination"=>"BumpStop", 
  "name"=>"SONAR", 
  "displayed_name"=>"Sensor", 
  "messages_out"=>"M4", 
  "id"=>"id-0065-00000005", 
  "messages_in"=>nil}] 

Table 24. Search the Artifacts to Discover the Name of the Communications 
Destination Element 

 
 
 
 
 
 
 
 
 
 



195 

Rule 12. We now have enough information to do error checking if desired.   
 
Error checks to make sure serial speeds match. 
For each Artifact, check child components for SerialCommunications components.  If 
found,  find a Channel frame that has the source matching the Artifact.  Find the 
destination Artifact from the channel destination slot.  In the destination Artifact, find the 
SerialCommunications Component and check the appropriate destination Component slot 
to insure they match (Table 25). 
 
Pseudo Code Output 
i= 1 
For each Artifact[i] 
j = 1 
  For each Artifact[j] 
     If artifact[i].name != artifact[j].name 
       Then 
           If Artifact[i].comms_destination =  
                                                        artifact[j].name 
           then 
               For each component in artifact[i] 
                 If component.kind =  
                                           ‘SerialCommunications” 
                     Then 
                      For each component in Artifact[j] 
                          If component.kind =  
                                           ‘SerialCommunications’ 
                           Then 
                        If                      
                         artifact[i].component.serialspeed !=  
                           artifact[j].component.serialspeed 
                           Then 
                             print error message 
                          endif 
                        If                      
                         artifact[i].component.serialport !=  
                           artifact[j].component.serialport 
                           Then 
                             print error message 
                          Endif 
                         Endif 
                      Endfor 
                  Endif 
               Endfor 
             Endif 
         Endif 
    j = j + 1 
   endfor 
 i = I + 1 
Endfor 
 
 

Since the serial speeds match, the rule succeeds 
silently. 
 

Table 25. Serial Port Error Checking, Check to Insure that Serial Speeds Match 



196 

Rule 13. Configure  IP Communications Components by finding the appropriate 
Component frames and slot values and substituting the values into the template file 
(Table 26). 
 
Pseudo Code Output 
i= 1 
For each Artifact[i] 
j = 1 
  For each Artifact[j] 
     If artifact[i].name != artifact[j].name 
       Then 
           If Artifact[i].comms_destination =  
                                                        artifact[j].name 
           then 
               For each component in artifact[i] 
                 If component.kind =  
                                           ‘UDPCommunications” 
                     Then 
                      For each component in Artifact[j] 
                          If component.kind =  
                                           ‘TCPCommunications’ 
                           Then 
        artifact[i].component.destinationIPaddress =  
                           artifact[j].component.IPAddress 
              artifact[i].component.destinationIPport =  
                           artifact[j].component.port 
                           Endif 
                      Endfor 
                  Endif 
               Endfor 
             Endif 
         Endif 
    j = j + 1 
   Endfor 
 i = I + 1 
Endfor 
 
 

Relevant Component frame updates. 
Component[1,2].id = "id-0066-0000000c" 
Component[1,2].name = 
ODISOCUTCPCommunications 
Component[1,2].kind = "TCPCommunications" 
Component[1,2].IPAddress = 10.0.0.3 
Component[1,2].port = 3743 
Component[1,2].destinationIP =  10.0.0.1 
 
Component[2,2].id = "id-0066-00000008" 
Component[2,2].name = 
ODISTCPCommunications 
Component[2,2].kind = "TCPCommunications" 
Component[2,2].IPAddress = 10.0.0.2 
Component[2,2.port = 3743 
Component[2,2].destinationIP = 10.0.0.3 
 
 
Component[3,3].id = "id-0066-00000005" 
Component[3,3].name = 
BumpControlTCPCommunicationsl 
Component[3,3].kind = "TCPCommunications" 
Component[3,3].IPAddress = 10.0.0.1 
Component[3,3].port = 3743 
Component[3,3].destinationIP = 10.0.0.2 
 

Table 26. Configure IP Component Frame Fields with Proper Communications 
Constants 

 
 
 
 
 
 
 
 
 
 



197 

Rule 14: Create Constants Files. 
 
Extract information from internal Ruby tables for each artifact in the prototype.  Create a 
file in each node folder, Constants.java and write the appropriate values to each.  
Constants are used to configure the components for now. (Table 27). 
Pseudo Code Output 
For each Artifact 
  Create a java file  
           “artifact.name”Constants  
           in the proper working 
directory 
  Open file for writing 
  Write the necessary constants 
   Close the file 
Endfor 

 
public class BumpStopConstants { 
 public static final String       
   MESSAGES_IN = M2,M4; 
 public static final String   
   MESSAGES_OUT = M4; 
 public static final String  
    SERIALSPEED = 9600; 
 public static final String  
    SERIALPORT = 1; 
 public static final String  
    DESTINATIONIPADDRESS = 10.0.0.2; 
 public static final String  
    DESTINATIONIPPORT = 3743; 
 public static final String  
    IPADDRESS = 10.0.0.1; 
 public static final String  
    PORT = 3743; 
} 
 

Table 27. Description of Create Constants File Rule 



198 

Rule 15: Create Main program. 
 
Create a main program for each node;  the main program instantiates components and 
initiates internal communications via the Java Observer pattern. (Table 28). 
Pseudo Code Output 
For each Artifact 
  Create a java file  
                             
“artifact.name”Main  
           in the proper working 
directory 
  Open file for writing 
  Write the necessary statements 
   (instantiate objects, register 
observers) 
   Close the file 
Endfor 

 
public class BumpStopMain { 
  public static void main(String args[]) {  
   BumpStopAdaptor _Adaptor =  
        new BumpStopAdaptor(); 
   SerialCommunications  
      _SerialCommunications =  
        new SerialCommunications(); 
   UDPCommunications _UDPCommunications =  
        new UDPCommunications(); 
   optional _optional =  
        new optional(); 
_SerialCommunications.addObserver(_Adaptor);
_Adaptor.addObserver(_optional); 
_optional.addObserver(_UDPCommunications); 
_UDPCommunications.addObserver(_Adaptor); 
 } 
} 

Table 28 . Rule to create a Java Main Program for each Node 



199 

Rule 16. Java command line files 
 
Create Java command line files to compile and run each node. Future implementations 
will include commands to create and execute Java jar files. (Table 29). 
Pseudo Code Output 
For each Artifact 
  Create a command file to compile  
javac.bat  in the proper working 
directory 
   
Open file for writing 
 
  Write the command line with the 
proper   Main file name 
 
   Close the file 
 
Create a command file to run 
  java.bat  in the proper working  
  directory 
   
  Open file for writing 
   
Write the command line with the 
proper Main file name 
    
 Close the file 
Endfor 

 
javac -classpath ./;../../codelocker/;../../codelocker/jaxb1-
impl.jar;../../codelocker/jaxb-api.jar;../../codelocker/jaxb-
impl.jar;../../codelocker/jaxb-
xjc.jar;../../codelocker/jsr173_1.0_api.jar;../../codelocker/jaus.
jar;./../codelocker/bin BumpStopMain.java -d bin 
 
 
 
 
 
java -classpath ./;./jaxb1-impl.jar;./jaxb-api.jar;./jaxb-
impl.jar;./jaxb-xjc.jar;./jsr173_1.0_api.jar;./jaus.jar;./bin 
BumpStopMain 

Table 29. Rule to Create DOS .bat Command Files to Execute Java Commands 
that Compile and Run the Java Wrapper Applications on Each Node



200 

2. Ruby Experiment File – basic_Robot.rb 

#~ Enter the GME output file (.xme) 
puts "Enter filename: " 
puts 
filename= gets.chomp 
puts filename 
 
xml = File.new(filename) 
 
# SciTE Test Case  
#~xml = File.new('Basic_Robot_Domain.xme') 
 
#include REXML  necessary Ruby extensions 
require 'rexml/document' 
require 'pp' 
require 'fileutils' 
require 'ftools'  
doc = REXML::Document.new xml 
  
#-- 1. Create Artifact List: 
 
#-- creates an array of hashes for artifact, adds the artifact IDs  
#~ Parse the XML file, find the Artifacts from child models of  
#~ the top-level model and create Artifact frames for them  
#~ with id, name and kind slots. 
 
artifact = Array.new 
 
i = 0 
doc.elements.each('//model/model') { |x|  
       artifact[i] = Hash.new 
       artifact[i] = {'id' => x.attributes["id"]} 
       i = i + 1 
} 
 
i = 0 



201 

doc.elements.each('//model/model') { |y|  
       y.elements.each('attribute') { |z| 
         z.elements.each('value') {|w| 
               if z.attributes["kind"] == "CONTROLID"  
                       then  
                       artifact[i]['name'] = w.text 
                       end 
               if z.attributes["kind"] == "OCUID"  
                       then  
                       artifact[i]['name'] = w.text 
                       end                      
               if z.attributes["kind"] == "PlatformType" 
                       then  
                       artifact[i]['name'] = w.text 
                       end                      
               if z.attributes["kind"] == "SensorName" 
                       then  
                       artifact[i]['name'] = w.text 
               end 
               if z.attributes["kind"] ==  "ManipulatorType" 
                       then  
                       artifact[i]['name'] = w.text 
                       end              
                       } 
                       } 
                       i = i+1 
               } 
i = 0 
 
doc.elements.each('//model/model/name') { |x| 
artifact[i]['displayed_name'] = x.text 
i = i + 1 
} 
 
 
 



202 

#-- 2. Create Channel  List: 
 
#~ Parse the XML file, find the Channels from child <connection>  
#~ tags of the top-level model and create Channel frames for  
#~ them with source and destination slots where source and  
#~ destination are the “id’s” are directly related to <Connpoint>  
#~ target and role attributes. 
 
channel = Array.new 
 
i = 0 
doc.elements.each("/project/folder/model/connection") { |x|  
       channel[i] = Hash.new 
       x.elements.each('connpoint') { |y| 
               if y.attributes["role"] == "src" 
                       then channel[i]['source'] = y.attributes["target"] 
               end 
                if y.attributes["role"] == "dst" 
                       then channel[i]['destination'] = y.attributes["target"] 
               end} 
       i = i + 1 
}       
 
#-- 3. Additional Channel information: 
 
#~ For readability, add Channel[Y].source.name to each Channel Frame  
#~ by going through the Artifacts and comparing their id slot to the  
#~ Channel[Y].source slot.  If they match, add the Artifact name to a  
#~ sub slot of Channel[Y].source, Channel[Y].source.name.   
#~ Do same for Channel[Y].destination. 
 
artifact.each { |x| channel.each{ |y|  
if x['id'] == y['source'] 
       then y['source_name'] = x['name'] 
end 
if x['id'] == y['destination'] 



203 

       then y['destination_name'] = x['name'] 
end} 
} 
 
#-- 4. Create Artifact Component Lists: 
 
#~ For each Artifact discovered in Rule 1, parse the XML file,  
#~ find the child Atoms.  Create Component frames for them with  
#~ id, name and kind slots. 
 
component = Array.new 
 
 i= 0 
doc.elements.each('/project/folder/model/model') { |x|  
  component[i] = Array.new 
   
  j = 0 
  x.elements.each('atom') { |y| 
    component[i][j] = Hash.new 
    component[i][j] = {'id' => y.attributes["id"]} 
    component[i][j]['kind'] = y.attributes["kind"] 
  j = j + 1 
} 
j = 0 
 
x.elements.each('atom/name') { |y| 
component[i][j]['name'] = y.text 
j = j + 1 
} 
i = i + 1 
} 
    
#-- 5 Create  dataflow lists 
 
#~ Parse the XML file, find the Dataflows from child <connection>  
#~ tags of the child model (Artifact) of the top-level model and create  
#~ Dataflow frames for them with source and destination slots where  



204 

#~ source and destination are the “id’s” are directly related to <Connpoint>  
#~ target and role attribute. 
 
dataflow = Array.new 
 
i = 0 
doc.elements.each("/project/folder/model/model") { |x|  
       dataflow[i] = Array.new 
       j = 0 
       x.elements.each("connection") { |y| 
       dataflow[i][j] = Hash.new 
       y.elements.each('connpoint') { |z| 
               if z.attributes["role"] == "src" 
                       then dataflow[i][j]['source'] = z.attributes["target"] 
               end 
                if z.attributes["role"] == "dst" 
                       then dataflow[i][j]['destination'] = z.attributes["target"] 
               end} 
       j = j + 1 
       } 
i = i + 1       
}       
 
 #-- 6. Additional dataflow information: 
 
#~ For readability, add Dataflow[X,W].source.name to each Dataflow Frame  
#~ by going through the Components in the current X and comparing  
#~ their id slot to the Dataflow[X,W].source slot.  If they match, add  
#~ the Component name to a sub slot of Dataflow[X,W].source,  
#~ Dataflow[X,W].source.name.  Do same for Dataflow[X,W].destination. 
 
i = 0 
component.each{|w| 
       component[i].each {|x|  
               dataflow[i].each{ |y|  
                       if x['id'] == y['source'] 
                               then y['source_name'] = x['name'] 



205 

                                       y['source_kind'] = x ['kind'] 
                       end 
                       if x['id'] == y['destination'] 
                               then y['destination_name'] = x['name'] 
                               y['destination_kind'] = x ['kind'] 
                       end 
 
               } 
       } 
i = i + 1 
} 
 
#~ 7. Create Artifact Message Lists: 
 
#~ For each Component atom, if  XML kind attribute is “adaptor,”  
#~ search for an <attribute> tag with of kind = "JAUSMessagesIn.”   
#~ Insert the <attribute> tag’s value into the corresponding  
#~ Artifact’s messages_in slot.  Do same for  
#~ kind = "JAUSMessagesOut". 
 
i = 0 
doc.elements.each("/project/folder/model/model") { |x|          
       x.elements.each("atom") { |y| 
               y.elements.each('attribute') { |z| 
                       z.elements.each('value') {|w| 
                       if z.attributes["kind"] == "JAUSMessagesIn" 
                               then  
                               artifact[i]['messages_in'] = w.text 
                       end 
                
                        if z.attributes["kind"] == "JAUSMessagesOut" 
                               then   
                               artifact[i]['messages_out'] = w.text 
                       end 
                       } 
               } 
       } 



206 

i = i + 1       
}       
 
#~ 8. Create Communications Components attribute list: 
 
#~ From the XML file, fill in appropriate slots in the Component data  
#~ structures for Communication components, i.e., speed and serial  
#~ port for serial communications, IP address or appropriate IP port for  
#~ IP communications. 
 
i = 0 
doc.elements.each("/project/folder/model/model") { |x| 
 
       j = 0 
 
       x.elements.each("atom") { |y| 
               if y.attributes["kind"] == 'SerialCommunications' 
                       then  
                       y.elements.each('attribute') { |z| 
                               z.elements.each('value') {|w| 
                                       if z.attributes["kind"] == 'Speed' 
                                               then  
                                               component[i][j]['serialspeed'] = w.text 
                                       end 
                                        if z.attributes["kind"] == "SerialPort" 
                                               then  
                                               component[i][j]['serialport'] = w.text 
                                       end  
                       } 
               } 
               end 
               if y.attributes['kind'] == 'TCPCommunications' 
                       then 
                       y.elements.each('attribute') { |z| 
                               z.elements.each('value') {|w| 
                                       if z.attributes["kind"] == "IPAddress" 
                                               then   



207 

                                               component[i][j]['IPAddress'] = w.text 
                                       end 
                                        if z.attributes["kind"] == "Port" 
                                               then  
                                               component[i][j]['Port'] = w.text 
                                       end 
                       } 
               } 
        
               end 
 
               if y.attributes['kind'] == 'UDPCommunications' 
                       then 
                       y.elements.each('attribute') { |z| 
                               z.elements.each('value') {|w| 
                                       if z.attributes["kind"] == "IPAddress" 
                                               then   
                                               component[i][j]['IPAddress'] = w.text 
                                       end 
                                        if z.attributes["kind"] == "Port" 
                                               then  
                                               component[i][j]['Port'] = w.text 
                                       end 
                       } 
               } 
               end 
       j = j + 1 
       } 
i = i + 1       
}       
 
#~ 9. Create Directury structure 
 
#~ Create a file folder for each Artifact using the Artifact’s  
#~ name slot for a folder name. 
 
#Working Directory hardcoded for now 
WORKDIR = 'c:/apex' 



208 

Dir.chdir(WORKDIR) 
 
x = doc.elements["/project[@guid]"] 
projectdir = x.attributes["guid"] 
projectdir1 = projectdir.sub(/[{]/,'dir') 
projectdir = projectdir1.gsub(/[}-]/, '') 
 
if  File.exists? projectdir 
       then 
       puts "Project Directory exists, removing" 
       puts projectdir 
       FileUtils.remove_dir projectdir 
       puts "removed projectdir" 
       end 
        
Dir.mkdir(projectdir) 
Dir.chdir(projectdir) 
 
artifact.each{|x| 
 
       d  = x['name'] 
       Dir.mkdir d 
       Dir.mkdir "#{d}/bin" 
       Dir.mkdir "#{d}/doc" 
} 
 
#~ 10. IMport Files from Code Repository 
 
#~Copy the appropriate files from the repository into the working directory 
#~Structure. 
#Repository location hard coded for now 
CODELOCKER = 'c:/apex/codelocker' 
 
i = 0 
doc.elements.each("/project/folder/model/model") { |x| 
       j = 0 
       x.elements.each("atom") { |y| 



209 

               sourcefile = '' 
               if y.attributes["kind"] == 'Adaptor'  
                       sourcefile = '' 
                       sourcefile = 'adaptors' 
                       sourcefile = sourcefile.insert(0, '/') 
                       sourcefile = sourcefile.sub(//, CODELOCKER) 
                       filename = artifact[i]['name'] 
                       sourcefile = sourcefile.insert(-1, '/')  
                       sourcefile = sourcefile.insert(-1, filename) 
                       sourcefile = sourcefile.insert(-1, y.attributes["kind"]) 
                       sourcefile = sourcefile.insert(-1, '.java') 
                        
                       destfile = 'c:/apex/' 
                       destfile = destfile.insert(-1, projectdir) 
                       destfile = destfile.insert(-1, '/')  
                       destfile= destfile.insert(-1, artifact[i]['name']) 
                       destfile = destfile.insert(-1, '/')  
                       destfile = destfile.insert(-1, filename) 
                       destfile = destfile.insert(-1, y.attributes["kind"]) 
                       destfile = destfile.insert(-1, '.java') 
                
                       File.copy sourcefile, destfile 
 
       # copy documentation while we are at it. 
                        
                       sourcefile = sourcefile.sub(/java/,'txt') 
                       destfile = 'c:/apex/' 
                       destfile = destfile.insert(-1, projectdir) 
                       destfile = destfile.insert(-1, '/')  
                       destfile= destfile.insert(-1, artifact[i]['name']) 
                       destfile = destfile.insert(-1, '/doc/')  
                       destfile = destfile.insert(-1, filename) 
                       destfile = destfile.insert(-1, y.attributes["kind"]) 
                       destfile = destfile.insert(-1, '.txt') 
                       File.copy sourcefile, destfile 
                                
               elsif y.attributes["kind"] == 'Optional'  



210 

                       sourcefile = '' 
                       sourcefile = 'Optional' 
                       sourcefile = sourcefile.insert(0, '/') 
                       sourcefile = sourcefile.sub(//, CODELOCKER) 
                       filename = 'Optional' 
                       sourcefile = sourcefile.insert(-1, '/')  
                       sourcefile = sourcefile.insert(-1, y.attributes["kind"]) 
                       sourcefile = sourcefile.insert(-1, '.java') 
 
                       destfile = 'c:/apex/' 
                       destfile = destfile.insert(-1, projectdir) 
                       destfile = destfile.insert(-1, '/')  
                       destfile= destfile.insert(-1, artifact[i]['name']) 
                       destfile = destfile.insert(-1, '/')  
                       filename = component[i][j]["kind"] 
                       destfile = destfile.insert(-1, filename) 
                       destfile = destfile.insert(-1, '.java') 
                        
                               File.copy sourcefile, destfile 
 
                       sourcefile = sourcefile.sub(/java/, 'txt')       
                        
                       destfile = 'c:/apex/' 
                       destfile = destfile.insert(-1, projectdir) 
                       destfile = destfile.insert(-1, '/')  
 
                       destfile= destfile.insert(-1, artifact[i]['name']) 
                       destfile = destfile.insert(-1, '/doc/')  
                       filename = component[i][j]["name"] 
                       destfile = destfile.insert(-1, filename) 
                       destfile = destfile.insert(-1, '.txt') 
                        
                               File.copy sourcefile, destfile 
                                
                        
               else 
                       sourcefile ='' 



211 

                       sourcefile = 'Communications' 
                       sourcefile = sourcefile.insert(0, '/') 
                       sourcefile = sourcefile.sub(//, CODELOCKER) 
                       sourcefile = sourcefile.insert(-1, '/')  
                       sourcefile = sourcefile.insert(-1, y.attributes["kind"]) 
                       sourcefile = sourcefile.insert(-1, '.java') 
                        
                       destfile = 'c:/apex/' 
                       destfile = destfile.insert(-1, projectdir) 
                       destfile = destfile.insert(-1, '/')  
                       destfile = destfile.insert(-1, artifact[i]['name']) 
                       destfile = destfile.insert(-1, '/')  
                       destfile = destfile.insert(-1, y.attributes["kind"]) 
                       destfile = destfile.insert(-1, '.java') 
 
                               File.copy sourcefile, destfile 
 
                       sourcefile = sourcefile.sub(/java/,'txt')        
                       destfile = 'c:/apex/' 
                       destfile = destfile.insert(-1, projectdir) 
                       destfile = destfile.insert(-1, '/')  
                       destfile = destfile.insert(-1, artifact[i]['name']) 
                       destfile = destfile.insert(-1, '/doc/')  
                       destfile = destfile.insert(-1, y.attributes["kind"]) 
                       destfile = destfile.insert(-1, '.txt') 
                        
                               File.copy sourcefile, destfile 
                                
                       end 
       j = j + 1 
       } 
       destdir = 'c:/apex/' 
       destdir = destdir.insert(-1, projectdir) 
       destdir = destdir.insert(-1, '/')  
       destdir = destdir.insert(-1, artifact[i]['name']) 
       destdir=  destdir.insert(-1, '/')  
       sourcedir = '' 



212 

       sourcedir = sourcedir.sub(//, CODELOCKER) 
 
       Dir.entries(sourcedir).each  {|name| 
        
               if File.fnmatch('*.jar', name) 
                        
                       sourcefile = '' 
                       sourcefile = sourcefile.insert(0, sourcedir) 
                       sourcefile = sourcefile.insert(-1, '/')  
                       sourcefile = sourcefile.insert(-1, name) 
                        
                       destfile = '' 
                       destfile = destfile.insert(0, destdir) 
                       destfile = destfile.insert(-1, '/')  
                       destfile = destfile.insert(-1, name) 
                        
                       File.copy sourcefile, destfile 
               end 
        
               } 
 i = i + 1 
} 
 
#~ 11.  Set Artifact Comms destination element. 
 
#~ Match artifact names to channel source names.  Set artifact communications 
#~ destination to channel destination name. 
 
i = 0 
artifact.each { |x| 
       j = 0 
 
       channel.each { |y| 
 
               if y["source_name"] == x["name"] 
                       then 
                       x["comms_destination"] = y["destination_name"] 
               end 



213 

       j = j + 1 
       } 
i = i + 1 
} 
 
#~ 12. Error check to make sure serial speeds match 
 
#~ For each Artifact, check child components for SerialCommunications  
#~ components.  If found, find a Channel frame that has the source  
#~ matching the Artifact.  Find the destination Artifact from the channel  
#~ destination slot.  In the destination Artifact, find the SerialCommunications  
#~ Component and check the appropriate destination Component slot to  
#~ insure they match. 
 
i = 0 
artifact.each{ |x| 
       j = 0 
       artifact.each { |y| 
               if x["name"] != y["name"] 
                       if x["comms_destination"] == y["name"] 
                               component[i].each { |w| 
                               if w["kind"] =="SerialCommunications" 
                                       component[j].each {|z| 
                                         if z["kind"] =="SerialCommunications" 
                                                 if z["serialspeed"] != w["serialspeed"]  
                                                         then 
                                                          print('Source component ', w['name'], '\n') 
                                                          print('destination component ', z['name'], '\n') 
                                                          print("SERIAL SPEED MISMATCH\n") 
                                                          print("Between Source Port ", w['serialport'], " on ", w['name'], " and\n") 
                                                          print("Destination Port ", w['serialport'], " on ", z['name'], "\n") 
                                                          print("-Please repair \n") 
                                                         else 
                                                         print("SERIAL SPEEDS MATCH\n") 
                                                         print("Between Source Port ", w['serialport'], " on ", w['name'], " and\n") 
                                                         print("Destination Port ", w['serialport'], " on ", z['name'], "\n") 
                                                 end 



214 

                                         end 
                                         } 
                                 end 
                                 } 
                         end 
                          
                 end 
       j = j + 1 
       } 
i = i +1 
} 
        
#~ 13. Set up destination IP addresses and Ports in IP Communication Components 
 
#~ Configure TCPCommunications Components by finding the appropriate  
#~ Component frames and slot values and substituting the values into the  
#~ proper slots. 
 
i = 0 
artifact.each{ |x| 
       j = 0 
       artifact.each { |y| 
               if x["name"] != y["name"] 
                       if x["comms_destination"] == y["name"] 
                               component[i].each { |w| 
                               if w["kind"] =="TCPCommunications" 
                                       component[j].each {|z| 
                                         if z["kind"] =="TCPCommunications" 
                                                 then 
                                                 w["destinationIPaddress"] = z["IPAddress"] 
                                                 w["destinationIPport"] = z["Port"] 
                                                       print('Source component ', w['name'], "\n") 
                                                       print('destination component ', z['name'], "\n") 
                                                       print(w['destinationIPport'], " on ", w['destinationIPaddress'], " \n") 
                                               end      
                                         } 
                                 end 
                                 } 



215 

                         end 
                 end 
         j = j + 1 
         } 
i = i +1 
}       
i = 0 
artifact.each{ |x| 
       j = 0 
       artifact.each { |y| 
               if x["name"] != y["name"] 
                       if x["comms_destination"] == y["name"] 
                               component[i].each { |w| 
                               if w["kind"] =="UDPCommunications" 
                                       component[j].each {|z| 
                                       if z["kind"] =="UDPCommunications" 
                                                 then 
                                                 w["destinationIPaddress"] = z["IPAddress"] 
                                                 w["destinationIPport"] = z["Port"] 
                                                       print('Source component ', w['name'], "\n") 
                                                       print('destination component ', z['name'], "\n") 
                                                       print(w['destinationIPport'], " on ", w['destinationIPaddress'], " \n") 
                                       end                                                
                                       } 
                                 end 
                                 } 
                         end 
                 end 
         j = j + 1 
         } 
  i = i +1 
  }             
   
#~ 14. Create Constants Files 
 
#~ Create a constants files in the working directory for each node to configure  
#~components using appropriate values from artifact and component hash tables. 
 



216 

 i = 0 
artifact.each{ |x| 
       destfile = 'c:/apex/' 
       destfile = destfile.insert(-1, projectdir) 
       destfile = destfile.insert(-1, '/')  
       destfile = destfile.insert(-1, artifact[i]['name']) 
       destfile = destfile.insert(-1, '/')  
       #destfile = destfile.insert(-1, x["name"]) 
       destfile = destfile.insert(-1, 'Constants.java')  
        
       open(destfile, 'w') do |f| 
               #f << "public class " << x["name"] << "Constants {\n" 
               f << "public class " << "Constants {\n" 
                if artifact[i]["messages_in"] != nil 
                        then 
                        f << "public static final String MESSAGES_IN = "  <<  '"' << artifact[i]["messages_in"]  <<  '"' << ";\n" 
                end 
                 if artifact[i]["messages_out"] != nil 
                        then 
               f << "public static final String MESSAGES_OUT = "  <<  '"' << artifact[i]["messages_out"]  <<  '"' << ";\n" 
               end 
       j = 0    
       component[i].each{|y| 
               if y["kind"] == "TCPCommunications"  
                       then  
                       f << "public static final String DESTINATIONIPADDRESS = " <<  '"' << y["destinationIPaddress"] 

 <<'"' << ";\n" 
                       f << "public static final String DESTINATIONPORT = " <<'"'  << y["destinationIPport"] <<'"' << ";\n" 
                       f << "public static final String IPADDRESS = " <<'"' << y["IPAddress"] <<'"' << ";\n" 
                       f << "public static final String PORT = " <<'"' << y["Port"] <<'"' << ";\n" 
               end 
 
               if y["kind"] == "UDPCommunications"  
                       then  
                       f << "public static final String DESTINATIONIPADDRESS = " <<'"' << y["destinationIPaddress"] 

<<'"' << ";\n" 
                       f << "public static final String DESTINATIONPORT = "  <<'"' << y["destinationIPport"] <<'"' << ";\n" 



217 

                       f << "public static final String IPADDRESS = " <<'"' << y["IPAddress"] <<'"' << ";\n" 
                       f << "public static final String PORT = " <<'"' << y["Port"] <<'"' << ";\n"      
               end 
 
               if y["kind"] == "SerialCommunications"  
                       then  
                        
                       f << "public static final String SERIALSPEED = " <<'"' << y["serialspeed"] <<'"' << ";\n" 
                       f << "public static final String SERIALPORT = " <<'"' << y["serialport"] <<'"' << ";\n" 
               end 
       j = j + 1 
       } 
 
        f << "}\n" 
        f.flush 
        end 
 i = i + 1 
 } 
  
#~ Rule 15. main program  
 
#~ Create Main programs for each node. Instantiate objects and  
#~ initiate observers. 
 
i = 0 
artifact.each{ |x| 
       destfile = 'c:/apex/' 
       destfile = destfile.insert(-1, projectdir) 
       destfile = destfile.insert(-1, '/')  
       destfile = destfile.insert(-1, artifact[i]['name']) 
       destfile = destfile.insert(-1, '/')  
       destfile = destfile.insert(-1, x["name"]) 
       destfile = destfile.insert(-1, 'Main.java')  
        
       open(destfile, 'w') do |f| 
               f << "public class " << x["name"] << "Main {\n" 
               f << "public static void main(String args[]) { \n" 



218 

       
       j = 0  
       component[i].each{|y| 
               if y["kind"] == "Adaptor"  
                       then 
                               f << x["name"] << y["kind"] << " " << "_" << y["name"] << " = new "   

<< x["name"] << y["kind"] << "();\n" 
                       else 
                               f <<   y["kind"] << " " << "_" << y["name"] << " = new "   << y["kind"] << "();\n" 
                  end 
       } 
       dataflow[i].each{|y| 
               f << "_" << y["source_name"] << ".addObserver(" << "_" << y["destination_name"] << ");\n" 
       j = j + 1 
       } 
        
       f << "}\n" 
       f << "}\n" 
       f.flush 
       end 
i = i + 1 
 } 
 
#Rule 16. Java command line files 
 
#~Create Java command line files to compile and run each node. 
 
i = 0 
artifact.each{ |x| 
       destfile = 'c:/apex/' 
       destfile = destfile.insert(-1, projectdir) 
       destfile = destfile.insert(-1, '/')  
       destfile = destfile.insert(-1, artifact[i]['name']) 
       destfile = destfile.insert(-1, '/')  
       destfile = destfile.insert(-1, 'runjavac.bat')  
 
       open(destfile, 'w') do |f| 
               filestring = '' 



219 

               filestring = filestring.insert(0, "javac -classpath ") 
               filestring = filestring.insert(-1, "./;") 
               filestring = filestring.insert(-1, "../../codelocker/;") 
               filestring = filestring.insert(-1, "../../codelocker/jaxb1-impl.jar;") 
               filestring = filestring.insert(-1, "../../codelocker/jaxb-api.jar;") 
               filestring = filestring.insert(-1, "../../codelocker/jaxb-impl.jar;") 
               filestring = filestring.insert(-1, "../../codelocker/jaxb-xjc.jar;") 
               filestring = filestring.insert(-1, "../../codelocker/jsr173_1.0_api.jar;") 
               filestring = filestring.insert(-1, "../../codelocker/jaus.jar;") 
               filestring = filestring.insert(-1, "./../codelocker/bin ") 
               filestring = filestring.insert(-1, x["name"] ) 
               filestring = filestring.insert(-1, "Main.java") 
               filestring = filestring.insert(-1, " -d bin") 
        
               f << filestring      
        f.flush 
        end 
        destfile = destfile.sub("javac", "java") 
        open(destfile, 'w') do |f| 
                filestring ='' 
               filestring = filestring.insert(0, "java -classpath ") 
               filestring = filestring.insert(-1, "./;") 
               filestring = filestring.insert(-1, "./jaxb1-impl.jar;") 
               filestring = filestring.insert(-1, "./jaxb-api.jar;") 
               filestring = filestring.insert(-1, "./jaxb-impl.jar;") 
               filestring = filestring.insert(-1, "./jaxb-xjc.jar;") 
               filestring = filestring.insert(-1, "./jsr173_1.0_api.jar;") 
               filestring = filestring.insert(-1, "./jaus.jar;") 
               filestring = filestring.insert(-1, "./bin ") 
               filestring = filestring.insert(-1, x["name"] ) 
               filestring = filestring.insert(-1, "Main") 
               f << filestring 
         f.flush 
       end 
 i = i + 1  
}



220 

THIS PAGE INTENTIONALLY LEFT BLANK 



221 

LIST OF REFERENCES 

[1] “DoD Integrated Product and Process Development Handbook,” Office 
of the Under Secretary of Defense (Acquisition and Technology), 
Washington, DC 20301-3000, 
http://akss.dau.mil/docs/026EV001DOC.doc, 09 May 2007. 

[2] Wired Magazine, December, 2004:    “More Robot Grunts Ready for 
Duty” 
http://www.wired.com/news/technology/0,1282,65885,00.html?tw=wn_t
ophead_1, 09 April 2007. 

 
[3] W. Smuda, P. Muench, G. Gerhart, K. Moore, “Autonomy and Manual 

Operation in a Small Robotic System for Real-time Inspections at 
Security Checkpoints,” SPIE Defense & Security Symposium, Orlando, 
FL, April 2002. 

[4] C. LickTeig, W. Sanders, P. Durlach, J. Lussier, “Measuring Human 
Performance in Battle Command Army AL&T, May-June 2005, pp. 16-
20. 

 
[5] L. Ojeda L., J. Borenstein, “FLEXnav: Fuzzy Logic Expert Rule-based 

Position Estimation for Mobile Robots on Rugged Terrain,” Proceedings 
of the 2002 IEEE International Conference on Robotics and Automation. 
Washington DC, USA, 10 - 17 May 2002, pp. 317-322. 

 
[6] W. Smuda, L. Freiburger, H. Andrusz, J. Overholt , G. Gerhart, D. 

Gorsich,  “Rapid Infusion Of Army Robotics Technology For Force 
Protection & Homeland Defense”, Army Science Conference, Orlando, 
FL, December 2002. 

 
[7]  “Traffic Safety Facts,” 2004, National Traffic Safety Association 

(NHTSA), http://www-nrd.nhtsa.dot.gov/pdf/nrd-
30/NCSA/TSFAnn/TSF2004.pdf, 09 April 2007. 

 
[8] B. Boehm, “A Spiral Model of Software Development and 

Enhancement,” Computer, pp. 61-72, May 1988. 
 
[9] L. Freiburger, W. Smuda, R. Karlsen, S. Lakshmanan, “ODIS the Under-

vehicle Inspection Robot – Development Status Update,” SPIE Defense 
& Security Symposium, Orlando, FL, April 2003.  

 



222 

[10] W. Smuda, L. Freiburger, G. Gerhart, L. Mallon, “Robotics for Port 
Security,” SPIE Defense & Security Symposium, Orlando, FL, April 
2004. 

 
[11] E. Schoenherr, W. Smuda, “Real-time Autonomous Inspection through 

Undercarriage Signatures,” SPIE Defense & Security Symposium, 
Orlando, FL, April 2005. 

 
[12] J. Overholt, G. Hudas,  C.K. Cheok, “A Modular Neural-Fuzzy 

Controller for Autonomous Reactive Navigation,” NAFIPS 2005, Soft 
Computing for Real World Applications, Ann Arbor, MI. 22-25 June 
2005. 

 
[13] W. Smuda, “Software Requirements Specification (SRS), Track Vehicle 

Workstation (TVWS), General Test Utility Subsystem (genx)” TARDEC 
Technical Report, October 1993. 

 
[14] F. Klassner, “A case study of LEGO Mindstorms'™ suitability for 

artificial intelligence and robotics courses at the college level,” Technical 
Symposium on Computer Science Education, Proceedings of the 33rd 
SIGCSE technical symposium on Computer science education,  
Cincinnati, Kentucky, February 27 - March 03, 2002, pp. 8-12.  

 
[15] News 2.0, ACM Queue, Volume 5, Issue 1, February 2007, p. 8.  

 
[16] J. Krikke, IEEE Intelligent Systems, September/October 2006. 
 
[17] Microsoft Robotics Studio, http://msdn.microsoft.com/robotics/, 7 

May 2007. 
 
[18] K. Chang, S. Cohen, J. Hess, W. Nowak, S. Peterson, “Feature Oriented 

Domain Analysis (FODA) Feasibility Study,” Technical Report, 
CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon 
University, Pittsburgh, PA, November 1990. 

 
[19] K. Czarnecki, U. Eisenecker, “Generative Programming: Methods, Tools, 

and Applications,” Boston, MA, Addison-Wesley, 2000. 
 
[20] B. Dawes, “Feature Model Diagrams in text and HTML,” 

http://www.boost.org/more/feature_model_diagrams.htm,  09 April 2007. 
 
[21] “Model-driven Architecture (MDA),” Document number ormsc/2001-07-

01 Architecture Board ORMSC1 July 9, 2001, http://www.omg.org/mda, 
09 April 2007. 

 



223 

[22] K. Czarnecki, T. Bednasch, P. Unger, U. Eisenecker, “Generative 
Programming for Embedded Software: An Industrial Experience Report,” 
Proceedings ACM SIGPLAN/SIGSOFT Conference, GPCE, Pittsburgh, 
PA, October 2002. 

 
[23] “An SAE AADL Language Overview,” SAE AADL Information Site, 

http://la.sei.cmu.edu/aadlinfosite/AnSAEAADLLanguageOverview.html, 
10 May 07. 

 
[24] R. Pierce, “Leveraging Technology Affinity: Applying a Common Set of 

Tools and Practices to Information Development,” SIGDOC’05, 21-23 
September 2005, Coventry, United Kingdom. 

  
[25] Y. Li, J. Landay, Z. Guan, X. Ren, G. Dai, G., “Sketching Informal 

Presentations,” ICMI’03,5-7 November 2003, Vancouver, British 
Columbia, Canada. 

 
[26] Luqi, “Software Evolution Through Rapid Prototyping,” IEEE Computer, 

May 1989, pp. 13-25. 
 
[27] Joint Ground Robotics Enterprise Overview,  

http://www.ndia.org/Content/ContentGroups/Divisions1/Robotics/Purdy.
pdf, 09 April 2007. 

 
[28] Public Law 106-398; 114 Stat. 1654A-38. 
 
[29] SEI Software Architecture, http://www.sei.cmu.edu/ata/ata_init.html, 09 

April 2007. 
 
[30] N. Rozanski, E. Woods, “Software Systems Architecture: Working With 

Stakeholders Using Viewpoints and Perspectives,” Addison Wesley 
Professional, 2005. 

 
[31] D. D’Souzaand and A.Wills , “Objects Components and Frameworks 

with UML,” Addison Wesley, 1999. 
 
[32] R. Kazman, “Handbook of Software Engineering and Knowledge 

Engineering,”  December 2001, ftp://cs.pitt.edu/chang/handbook/15.pdf, 
09 April 2007. 

 
[33] M. Simos, D. Creps, C. Klinger, L. Levine, and D. Allemang, 

“Organization Domain Modeling (ODM) Guidebook,” Version 2.0. 
Informal Technical Report for STARS, STARS-VC-A025/001/00, 14 
June 1996. 

 



224 

[34] D. Schmidt, “Model-driven Engineering,” IEEE Computer, February 
2006, pp. 25-31. 

 
[35] “Joint Architecture for Unmanned Systems,” http://www.jauswg.org, 09 

April 2007. 

[36] NATO Working Group, STANAG 4586 "Standard Interface of the 
Unmanned Control System (UCS) for NATO UAV interoperability." 
http://www.cdlsystems.com/stanag.html, 10 May 2007. 

[37] “IEEE standard for distributed interactive simulation – 
applicationprotocols,” 
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel1/3700/10849/004997
01.pdf?arnumber=499701, 10 May 2007. 

[38] D. McGregor, D. Brutzman, C. Blais, A. Arnold, M. Falash, E. Pollak, 
“DIS-XML: Moving to Open Data Exchange Standards,” Proceedings of 
the Simulation Interoperability Standards Organization (SISO) Spring 
2006 Simulation Interoperability Workshop, Huntsvill, AL, April 2006. 

[39] D. Davis, “Design Implimentation and Testing of a Common Data Model 
Supporting Autonomous Vehicle Compatibiliy and Interoperabiliyt,” 
Naval Postgraduate School  Dissertation, September 2006. 

[40] C. Szyperski, "Component Technology - What, Where, and How?" icse, 
p. 684, 25th International Conference on Software Engineering 
(ICSE'03), 2003. 

[41] C. Szyperski, “Component Software, Beyond Object Oriented 
Programming,” Boston, MA, Addison-Wesley, 2002. 

[42] K. Czarnecki, and U.W. Eisenecker, “Generative Programming: Methods, 
Tools, and Applications.” Boston: Addison-Wesley, 2000.  

 
[43] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design Patterns,” Boston, 

MA, Addison-Wesley, 1995. 
 
[44] E. Freeman, “Head First Design Patterns,” Sebastopol, CA, O’Reilly, 

2004. 
 
[45] D. Schmidt, M. Stal, H. Rohnert, F. Buschmann, “ Pattern-Oriented 

Software Architecture, Vol 2, Patterns for Concurrent and Networked 
Objects,” West Sussex, England, 2000. 

 
[46] CMSC491D Design Patterns In Java, 

http://www.research.umbc.edu/~tarr/dp/fall00/cs491.html, 09 April 2007. 



225 

[47] Generic Modeling Environment, 
http://www.isis.vanderbilt.edu/projects/gme, 09 April 2007. 

 
[48] K. Czarnecki, M. Antkiewicz, C. Hwan, P. Kim, S. Lau, K. Pietroszek, 

“Model-Driven Software Product Lines,”  OOPSLA ’05, San Diego, CA, 
October 2005 

 
[49] Eclipse, http://www.eclipse.org/, 09 April 2007.   
 
[50] B. Tarr, “Design Patterns in Java, The Observer Pattern,” 

http://www.research.umbc.edu/~tarr/dp/lectures/Observer.pdf, 09 April 
2007.  

 
[51] Javatm 2 platform standard edition 5.0 API specification, 

HTTP://JAVA.SUN.COM/J2SE/1.5.0/DOCS/API/, 09 April 2007. 

 
[52] B. Tarr, “Design Patterns in Java, The Adaptor Pattern,” 

http://www.research.umbc.edu/~tarr/dp/lectures/Adapter.pdf, 09 April 
2007. 

 
[53] XML, Java Architecture for XML Binding (JAXB),  

http://Java.sun.com/webservices/jaxb/, 09 April 2007. 
 
[54] Matlab, http://www.mathworks.com/, 09 April 2007. 
 
[55] Labview, http://www.ni.com/labview/, 09 April 2007. 
 
[56] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason, G. 

Nordstrom, J. Sprinkle, P. Volgyesi, “The Generic Modeling 
Environment,” Proceedings of IEEE WISP’2001, Budapest, Hungary, 
May 2001. 

 
[57] D. Perry, A. Wolf , “Foundations for the study of Software Architecture,” 

ACM Software Engineering Notes, vol 17, no 4, 1992, pp. 40-52. 
 
[58] J. Borenstein, ”User Guide for the Micro-Controller Interface Board 

(MCIB),” University of Michigan, 1999, 
http://www.eecs.umich.edu/~johannb/MCIB_User_Guide.pdf, 09 April 
2007. 

 
[59] C. Marcus, “Prolog Programming,” Addison-Wesley, Reading, MA, 

1986. 
 
[60] NPS AuvWorkbench, https://savage.nps.edu/AuvWorkbench/install.htm, 

24 May 2007. 



226 

 
[61]  K. Dale, “Prolog  as a Ruby DSL,” 

http://www.kdedevelopers.org/node/2369, 10 May 2007. 
 
[62]  “Logic programming in Ruby: a tiny prolog interpreter and 

symbolic computation”, 
http://eigenclass.org/hiki.rb?tiny+prolog+in+ruby, 10 May 
2007. 

 
[63] E. Kidd, “Why Ruby is an acceptable LISP,” 

http://www.randomhacks.net/articles/2005/12/03/why-ruby-is-an-
acceptable-lisp, 10 May 2007. 

 
[64] “Project Sun Spot,” http://www.sunspotworld.com/, 10 May 2007. 
 
[65] Sun Developer’s Network, Java ME Technology, 

http://java.sun.com/javame/index.jsp, 10 May 2007. 
 
[66] The Goals 2000: Educate America Act, Public Law 103-227. 
 
[67] “First,” http://www.usfirst.org/, 10 May 2007. 

 
 
 
 
 



227 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft.  Belvoir, VA  
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, CA 
 

3. Professor Mikhail Auguston 
Department of Computer Science 
Naval Postgraduate School 
Monterey, CA 
 

4. Professor Luqi 
Department of Computer Science 
Naval Postgraduate School 

 Monterey, CA  
 
5. Associate Professor Don Brutzman 

Department of Undersea Warfare 
Naval Postgraduate School 
Monterey, CA 

 
6. Professor Kevin Squire 

Department of Computer Science 
Naval Postgraduate School 
Monterey, CA 
 

7. Dr. Jim Overholt 
Director, Joint Center for Unmanned Ground Systems 
US Army, TARDEC 
Warren, MI 
 

8. MOVES Institute 
Naval Postgraduate School 
Monterey, CA 
 

9. Technical Information Center 
US Army TARDEC  
Warren, MI 


